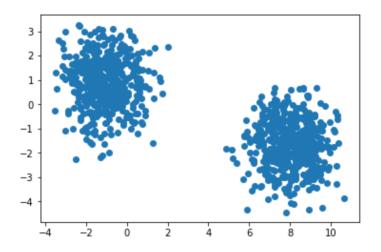
Lesson 1: Introduction to Clustering

Unsupervised	Supervised
 No labels provided Finds structure in unlabeled data Uses techniques such as clustering	 Labels provided Finds patterns in existing structure Uses techniques such as regression
or dimensionality reduction.	or classification.

Figure 1.1: Differences between unsupervised and supervised learning



Figures 1.2: Two distinct scatterplots

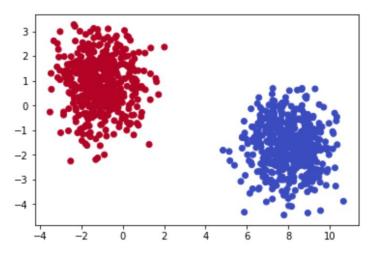


Figure 1.3: Scatterplots clearly showing clusters that exist in a provided dataset

```
array([[-0.72690901, 2.76012303],
       [-1.38504876, 2.16558784],
       [-1.12519969, 0.78279526],
       ...,
       [-0.92272983, -0.44782031],
       [ 8.26124228, -0.37099837],
       [-1.01204517, 0.3228703 ]])
```

Figures 1.4: Two-dimensional raw data in a NumPy array

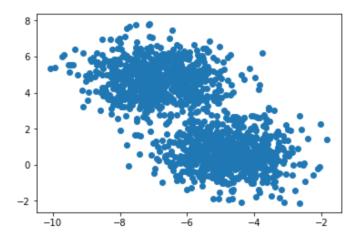


Figure 1.5 Two-dimensional scatterplot

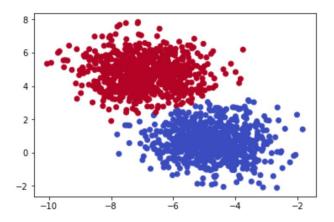


Figure 1.6: Clusters in the scatterplot

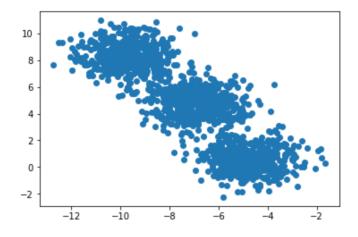


Figure1.7: Two-dimensional scatterplot

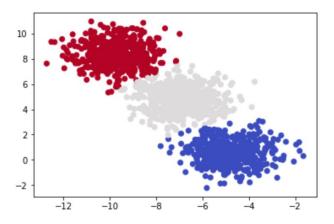


Figure 1.8: Clusters in the scatterplot

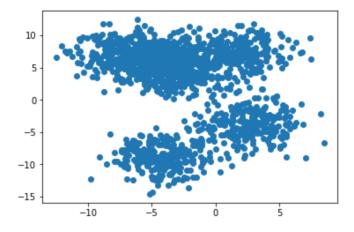


Figure1.9: Two-dimensional scatterplot

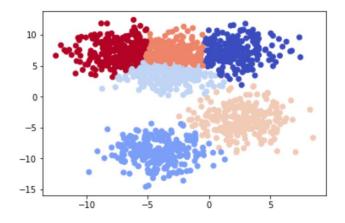


Figure 1.10: Clusters in the scatterplot

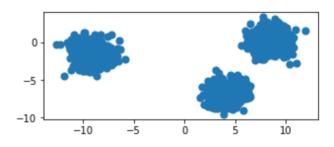


Figure 1.11: Original raw data charted on x,y coordinates

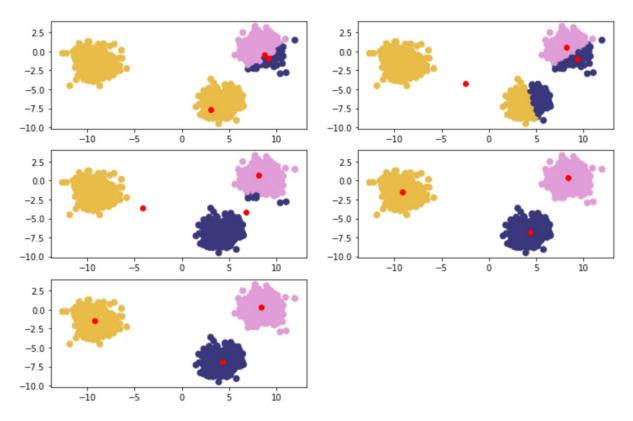


Figure 1.12: Reading from left to right – red points are randomly initialized centroids, and the closest data points are assigned to groupings of each centroid

 $d((x,y),(a,b)) = \sqrt{(x-a)^2 + (y-b)^2}$

Figure 1.13: Euclidean distance formula

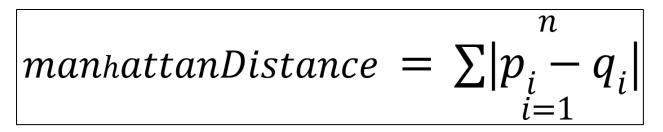


Figure 1.14: Manhattan distance formula

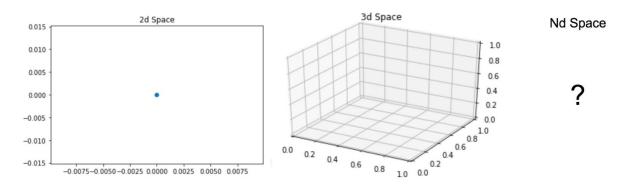


Figure 1.15: Two-dimensional, three-dimensional, and n-dimensional plots

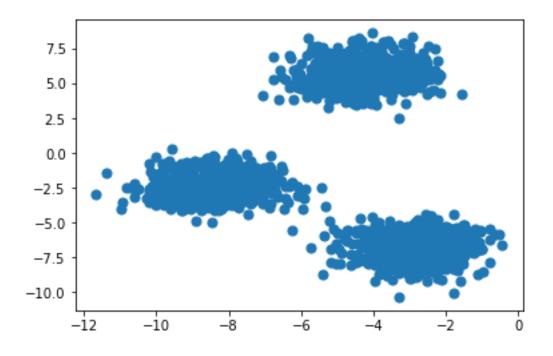


Figure 1.16: Plot of the coordinates

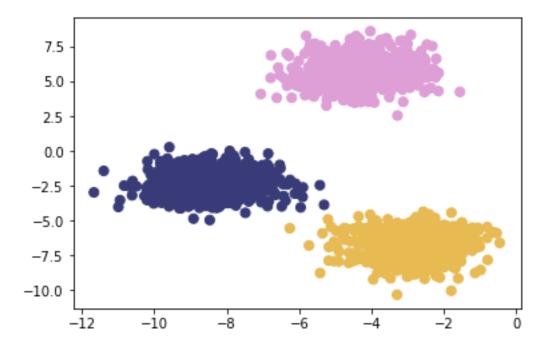


Figure 1.17: Plot of the coordinates with correct cluster labels

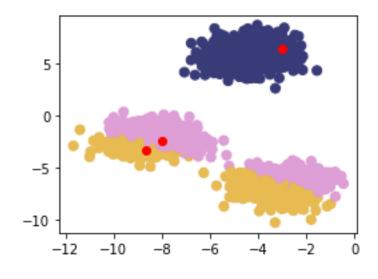


Figure 1.18: First scatterplot

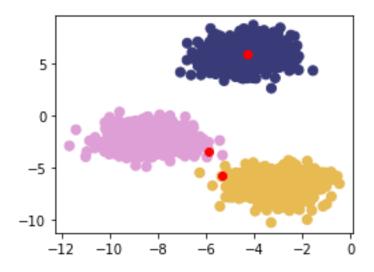


Figure 1.19: Second scatterplot

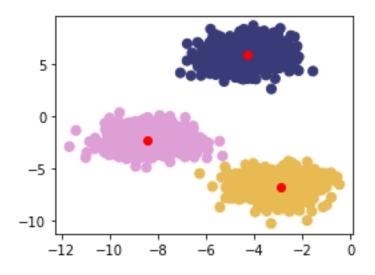
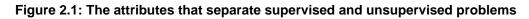


Figure 1.20: Third scatterplot



Figure 1.21: Expected plot of three clusters of Iris species

Lesson 2: Hierarchical Clustering



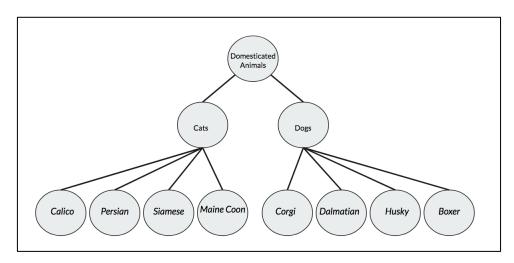


Figure 2.2: Navigating the relationships of animal species in a hierarchical tree structure

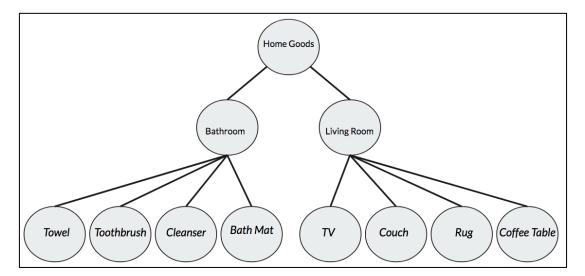


Figure 2.3: Navigating product categories in a hierarchical tree structure

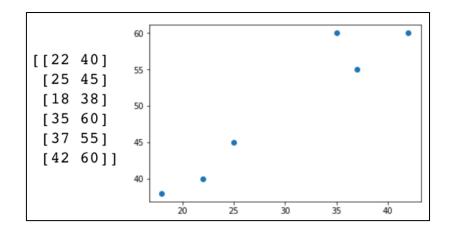


Figure 2.4: An example of a two-feature dataset comprising animal height and animal weight

	Point Distances					
(1,7) (-5,9) (-9,4) (4,-2)						
(1,7) (-5,9) (-9,4) (4,-2)	[1.044e+01,	9.223e+18, 6.403e+00,	6.403e+00, 9.223e+18,	9.487e+00], 1.421e+01], 1.432e+01], 9.223e+18]]		

Figure 2.5: An array of distances

Point Distances						
(1,7) (-5,9) (-9,4) (4,-2)						
(1,7) (-5,9) (-9,4) (4,-2)	[[9.223e+18, [6.325e+00, [1.044e+01, [9.487e+00,	223e+18, 6.403e+00,	6.403e+00, 9.223e+18,	1.421e+01],		

Figure 2.6: An array of distances

	Point Distances						
	(-2,8) (-9,4) (4,-2)						
(-2,8)	[[9.223e+18	8.062e+00	1.166e+01]				
(-9,4)	[8.062e+00	= 223e+18	1.432e+01]				
(4,-2)	[1.166e+01	1.432e+01	9.223e+18]]				

Figure 2.7: An array of distances

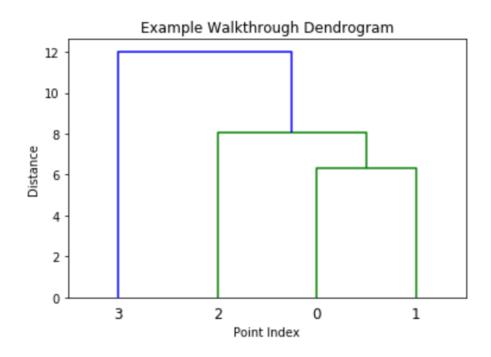


Figure 2.8: A dendrogram showing the relationship between the points and the clusters

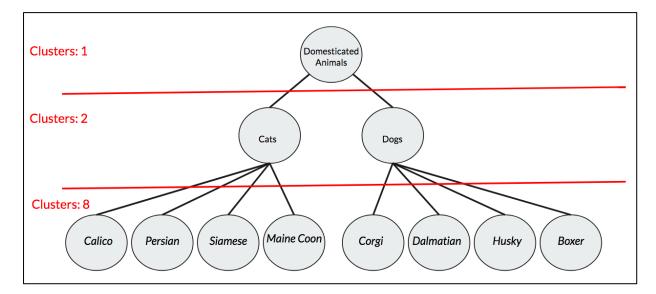


Figure 2.9: An animal taxonomy dendrogram

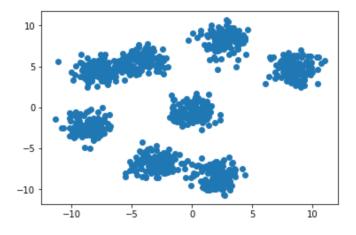


Figure 2.10: A plot of the dummy data

[[5.720e+02	7.620e+02	7.694e-03	2.000e+00]
[3.000e+01	1.960e+02	8.879e-03	2.000e+00]
[5.910e+02	8.700e+02	1.075e-02	2.000e+00]
•••			
[1.989e+03	1.992e+03	7.812e+00	3.750e+02]
[1.995e+03	1.996e+03	1.024e+01	7.500e+02]
[1.994e+03	1.997e+03	1.200e+01	1.000e+03]]

Figure 2.11: A matrix of the distances

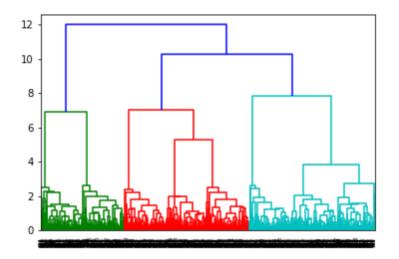


Figure 2.12: A dendrogram of the distances

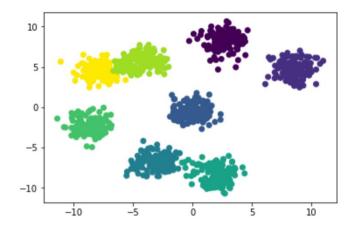


Figure 2.13: A scatter plot of the distances

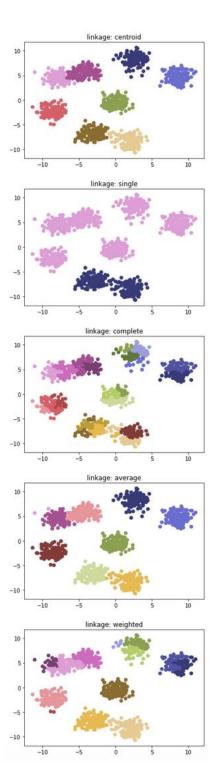


Figure 2.14: The expected scatter plots for all methods

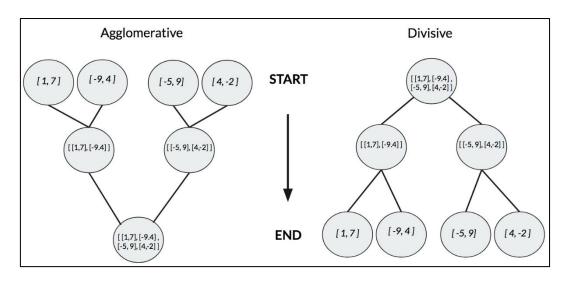


Figure 2.15: Agglomerative versus divisive hierarchical clustering

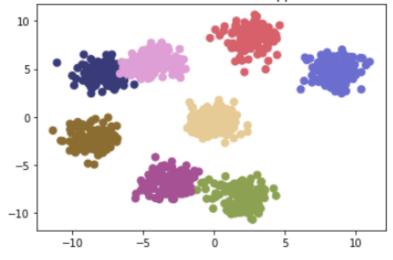
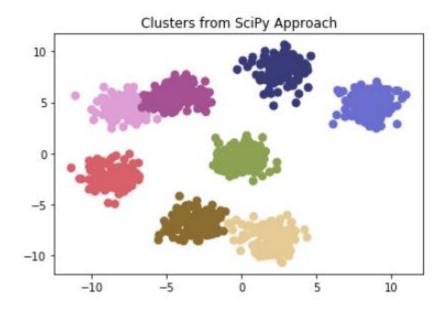


Figure 2.16: A plot of the Scikit-Learn approach



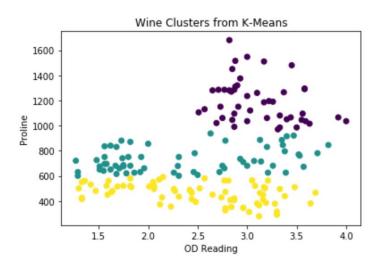


Figure 2.17: A plot of the SciPy approach

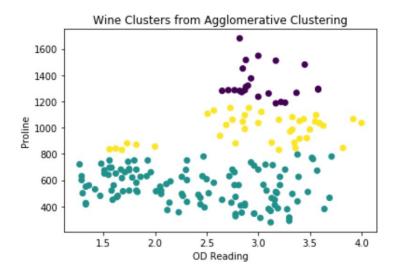


Figure 2.19: The expected clusters from the agglomerative method

Lesson 3: Neighborhood Approaches and DBSCAN

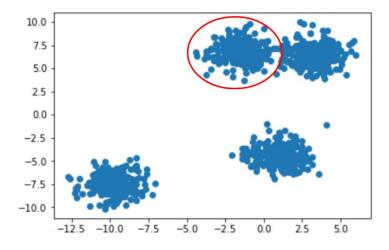


Figure 3.1: Neighbors have a direct connection to clusters

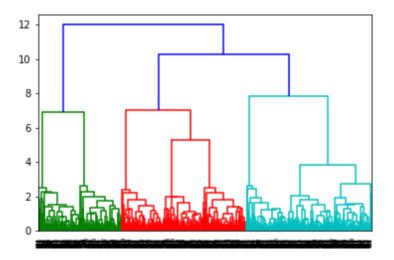


Figure 3.2: Example dendrogram

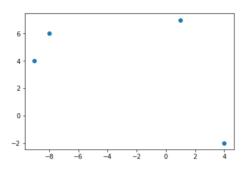


Figure 3.3: Plot of sample data points

Point Distances							
	(1,7) (-5,9) (-9,4) (4,-2)						
(1,7) (-5,9) (-9,4) (4,-2)	[1.044e+01,	9.223e+18, 6.403e+00,	6.403e+00, 9.223e+18,	9.487e+00], 1.421e+01], 1.432e+01], 9.223e+18]]			

Figure 3.4: Point distances

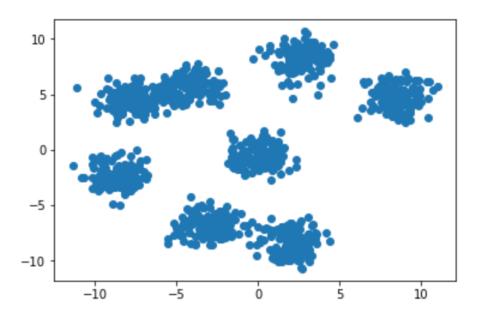


Figure 3.5: Visualized Toy Data Example

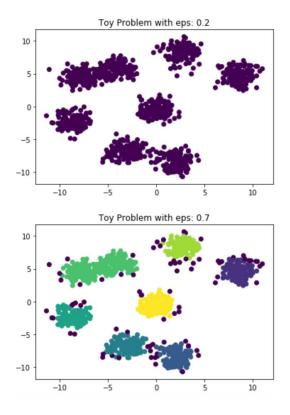


Figure: 3.6: Resulting plots

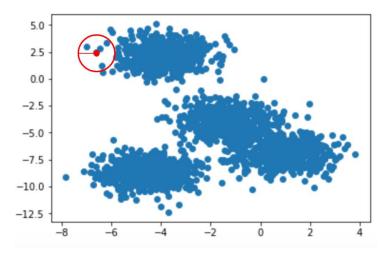


Figure 3.7: Visualization of neighborhood radius where red circle is the neighborhood

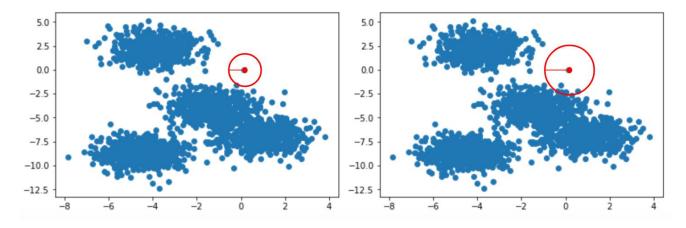


Figure 3.8: Impact of varying neighborhood radius size

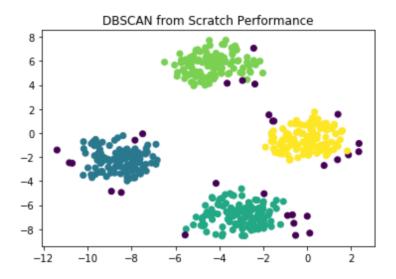


Figure 3.9: Expected outcome

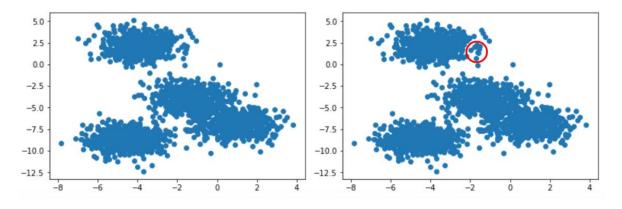


Figure 3.10: Minimum points threshold deciding whether a group of data points is noise or a cluster

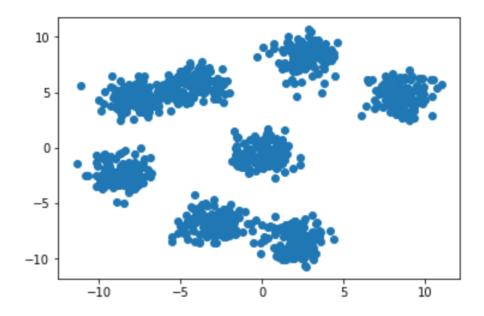


Figure 3.11: Plot of generated data

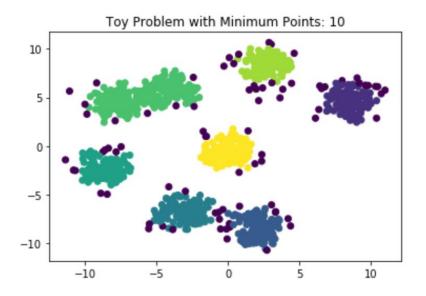


Figure 3.12: Plot of Toy problem with a minimum of 10 points

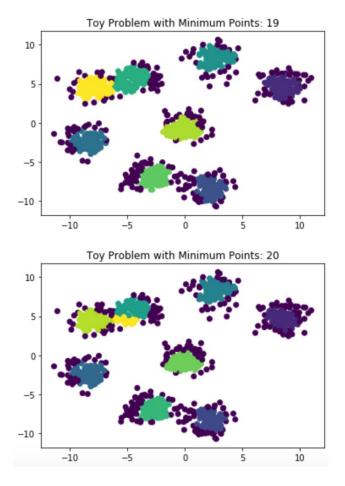


Figure 3.13: Plots of the Toy problem

Lesson 4: An Introduction to Dimensionality Reduction and PCA

Pressure (hPa)	Temperature (°C)	Humidity (%)
1050	32.2	12
1026	27.8	80

Figure 4.1: Two samples of data with three different features

Figure 4.2: Electrocardiogram (ECG or EKG)

Figure 4.3: An image filtered with dimensionality reduction. Left: The original image (Photo by Arthur Brognoli from Pexels), Right: The filtered image

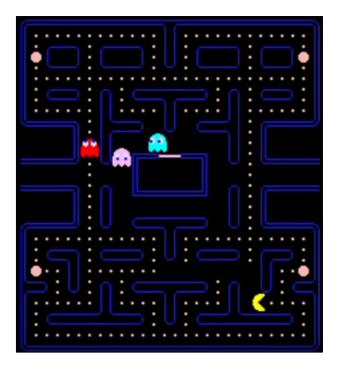


Figure 4.1: Dimensions in a PacMan game

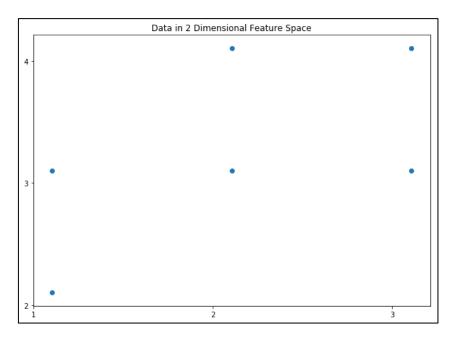


Figure 4.2: Data in a 2D feature space

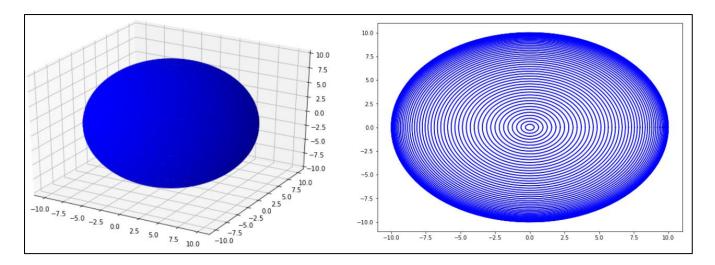


Figure 4.3: A projection of a 3D sphere into a 2D space

cov(X, X)	cov(X, Y)	cov(X, Z)
		cov(Y, Z)
cov(Z, X)	cov(Z, Y)	cov(Z, Z)

Figure 4.7: The covariance matrix

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Figure 4.8: The head of the data

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.9: The head after cleaning the data

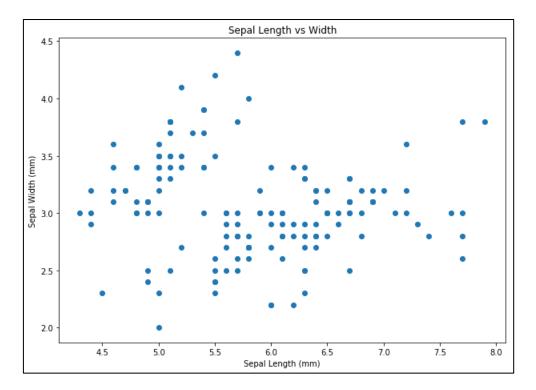


Figure 4.10: Plot of the data

	Sepal Length	Sepal Width
Sepal Length	0.685694	-0.039268
Sepal Width	-0.039268	0.188004

Figure 4.11: Covariance matrix using the Pandas method

```
array([[ 0.68569351, -0.03926846],
[-0.03926846, 0.18800403]])
```

Figure 4.12: The covariance matrix using the NumPy method

$$a = USV^T$$

Figure 4.13: An eigenvector/eigenvalue decomposition

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Figure 4.14: The first five rows of the dataset

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.15: The Sepal Length and Sepal Width feature

array([[-0.07553027,	-0.11068158],
[-0.07052087,	-0.06007995],
[-0.06946245,	-0.09874988],
[-0.06780439,	-0.09257869],
[-0.07500106,	-0.13001654],
[-0.08106887,	-0.14194824],
[-0.06949767,	-0.13083793],
[-0.07387221,	-0.10451038],

Figure 4.16: Eigenvectors

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Figure 4.17: The first five rows of the dataset

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.18: The s	sepal length	and sepal w	idth feature
--------------------	--------------	-------------	--------------

```
array([[ 0.68569351, -0.03926846],
[-0.03926846, 0.18800403]])
```

Figure 4.19: The covariance	matrix for the selected data
-----------------------------	------------------------------

array([[-0.99693955,	0.07817635],
[0.07817635,	0.99693955]])

Figure 4.20: Eigenvectors

array([-4.81077444,	-4.65047471,	-4.43545153,	-4.34357521,	-4.70326285,
-5.07858577,	-4.32012231,	-4.71889812,	-4.15982257,	-4.64265708,
-5.09422104,	-4.51951021,	-4.55078076,	-4.05231098,	-5.46954395,
-5.33857945,	-5.07858577,	-4.81077444,	-5.38548526,	-4.78732154,
-5.11767394,	-4.79513917,	-4.30448703,	-4.82640971,	-4.51951021,
-4.75016867,	-4.71889812,	-4.9104684 ,	-4.91828603,	-4.43545153,
-4.54296312,	-5.11767394,	-4.86356259,	-5.15482681,	-4.64265708,
-4.73453339,	-5.20955026,	-4.64265708,	-4.15200494,	-4.81859208,
-4.71108049,	-4.30642234,	-4.13636967,	-4.71108049,	-4.78732154,

Figure 4.21: The result of matrix multiplication

array([-4.81077444,	-4.65047471,	-4.43545153,	-4.34357521,	-4.70326285,
-5.07858577,	-4.32012231,	-4.71889812,	-4.15982257,	-4.64265708,
-5.09422104,	-4.51951021,	-4.55078076,	-4.05231098,	-5.46954395,
-5.33857945,	-5.07858577,	-4.81077444,	-5.38548526,	-4.78732154,
-5.11767394,	-4.79513917,	-4.30448703,	-4.82640971,	-4.51951021,
-4.75016867,	-4.71889812,	-4.9104684 ,	-4.91828603,	-4.43545153,
-4.54296312,	-5.11767394,	-4.86356259,	-5.15482681,	-4.64265708,
-4.73453339,	-5.20955026,	-4.64265708,	-4.15200494,	-4.81859208,
-4.71108049,	-4.30642234,	-4.13636967,	-4.71108049,	-4.78732154,
-4.55078076,	-4.78732154,	-4.33575758,	-4.99452708,	-4.72671576,
-6.72841249,	-6.13024876,	-6.63653617,	-5.30336189,	-6.26121325,
-5.46366162,	-6.02273717,	-4.69738052,	-6.35308957,	-4.97300948,
-4.82834502,	-5.64741426,	-5.80964929,	-5.8546198 ,	-5.35615003,
-6.43714826,	-5.34833239,	-5.57117321,	-6.0090372 ,	-5.38742057,
-5.63177899,	-5.86243744,	-6.08527825,	-5.86243744,	-6.15370166,
-6.34527194,	-6.56029512,	-6.44496589,	-5.75492585,	-5.47929689,
E 20554425	E 20554425	E E7117001	E 770E6110	E 14004440

Figure 4.22: The output of PCA

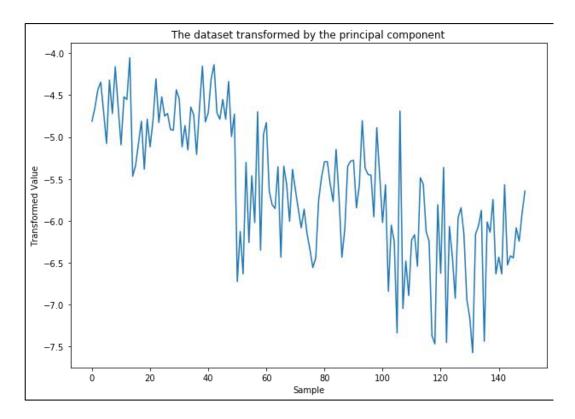


Figure 4.23: The Iris dataset transformed by using a manual PCA

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Figure 4.24: The first five rows of the dataset

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.25: The Sepal Length and Sepal Width features

```
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
    svd_solver='auto', tol=0.0, whiten=False)
```

Figure 4.26: Fitting data to a PCA model

```
array([[ 0.99693955, -0.07817635],
[ 0.07817635, 0.99693955]])
```

Figure 4.27: Eigenvectors

```
PCA(copy=True, iterated_power='auto', n_components=1, random_state=None,
    svd_solver='auto', tol=0.0, whiten=False)
```

Figure 4.28: The maximum number of eigenvalues and eigenvectors

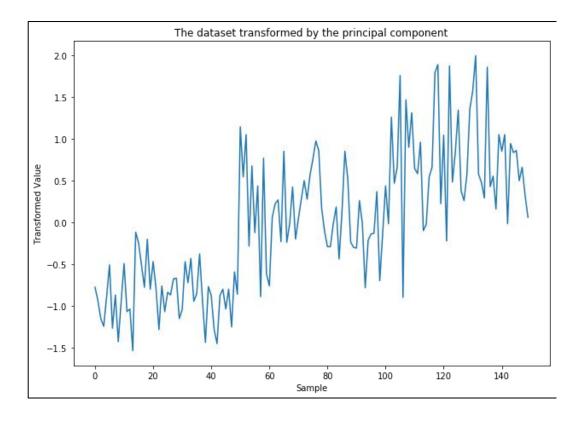


Figure 4.29: The Iris dataset transformed using the scikit-learn PCA

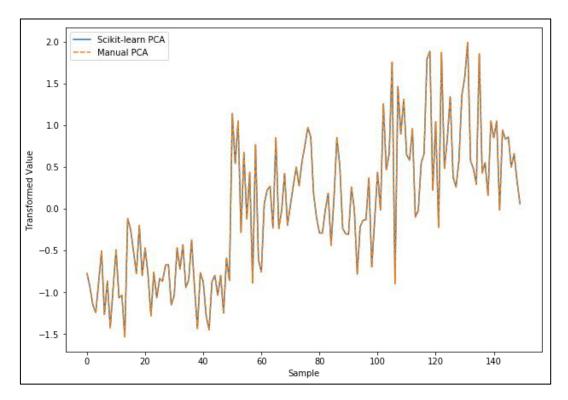


Figure 4.30: The expected final plot

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.31: Sepal features

array([[-0.74333333,	0.446],
[-0.94333333,	-0.054],
[-1.14333333,	0.146],
[-1.24333333,	0.046],
[-0.84333333,	0.546],
[-0.44333333,	0.846],
[-1.24333333,	0.346],
[-0.84333333,	0.346],

Figure 4.32: Section of the output

array([[-7.73550366e-01,	6.06589915e-02],
array([[-7.75550500e-01,	0.005899150-02],
[-9.33359508e-01,	7.31906401e-02],
[-1.14772462e+00,	9.00003684e-02],
[-1.23931976e+00,	9.71829241e-02],
[-8.80732922e-01,	6.90638556e-02],
[-5.06558669e-01,	3.97224787e-02],
[-1.26270089e+00,	9.90163868e-02],
[-8.65145502e-01,	6.78415472e-02],
[-1.42251003e+00,	1.11548035e-01],
[-9.41153218e-01,	7.38017944e-02],

Figure 4.33: The inverse transform of the reduced data

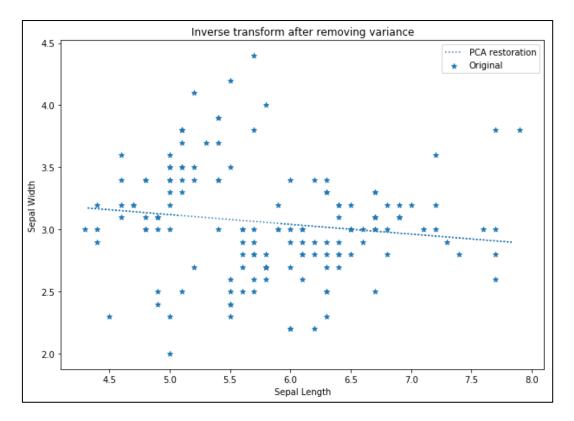


Figure 4.34: The inverse transform after removing variance

array([[-0.74333333,	0.446	,
[-0.94333333,	-0.054	j,
[-1.14333333,	0.146],
[-1.24333333,	0.046],
[-0.84333333,	0.546],
[-0.44333333,	0.846],
[-1.24333333,	0.346],
[-0.84333333,	0.346],

Figure 4.35: The restored data

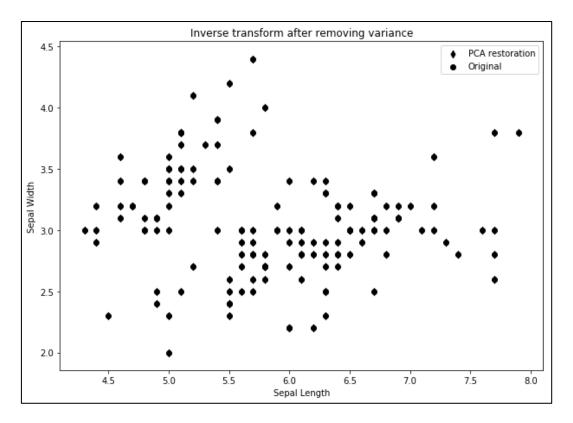


Figure 4.36: The inverse transform after removing the variance

	Sepal Length	Sepal Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.37: The Sepal features from the Iris dataset

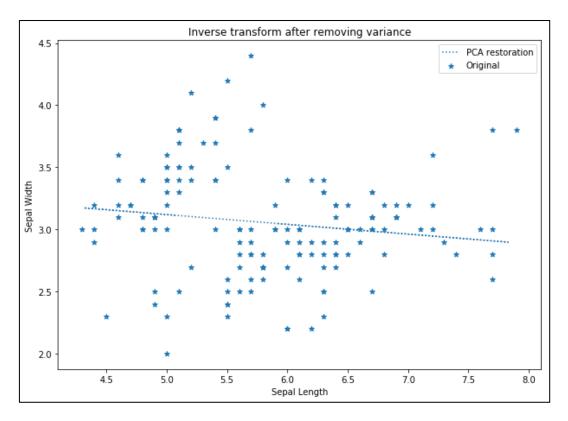


Figure 4.38: The inverse transform after removing the variance

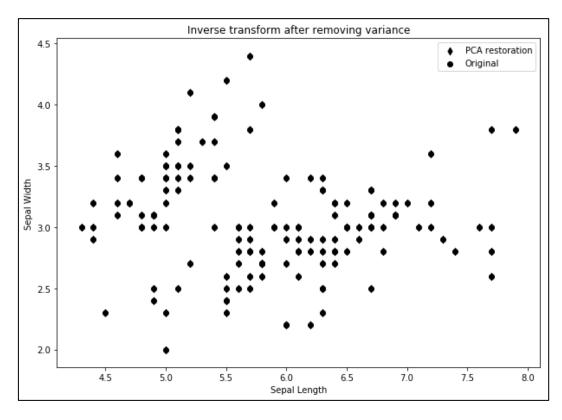


Figure 4.39: The inverse transform after removing the variance

	Sepal Length	Sepal Width	Petal Width
0	5.1	3.5	0.2
1	4.9	3.0	0.2
2	4.7	3.2	0.2
3	4.6	3.1	0.2
4	5.0	3.6	0.2

Figure 4.40: The first five rows of the data

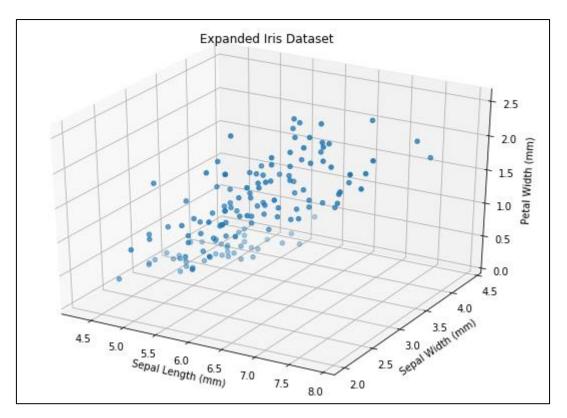


Figure 4.41: The expanded Iris dataset

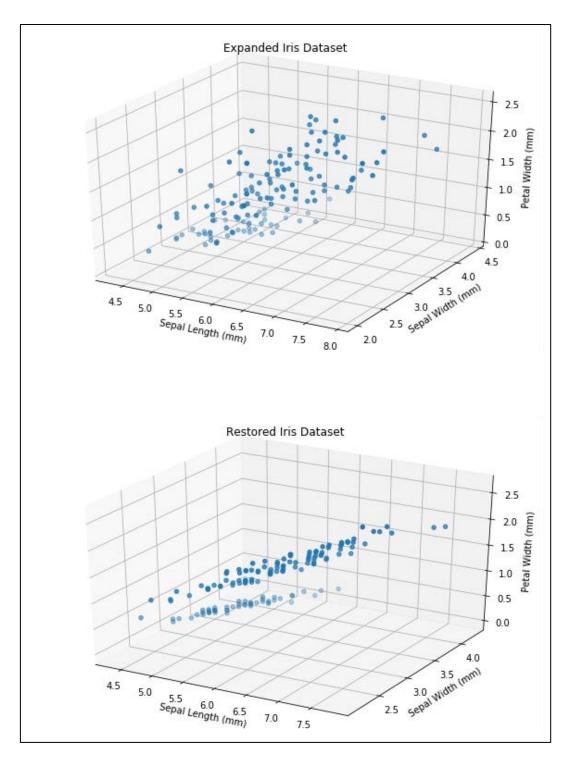


Figure 4.42: Expected plots

Lesson 5: Autoencoders

Figure 5.4: Autoencoder de-noising



Figure 5.5: Encoder/decoder representation

Figure 5.6: CIFAR-10 dataset

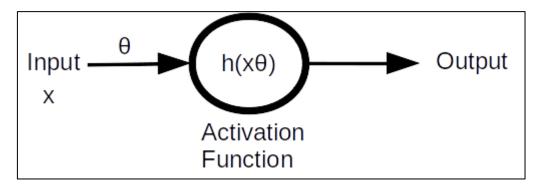


Figure 5.7: Anatomy of a neuron

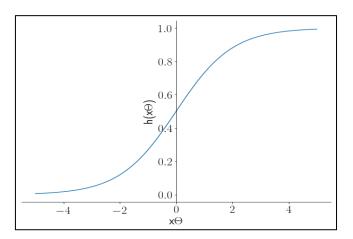


Figure 5.8: Output of the sigmoid function

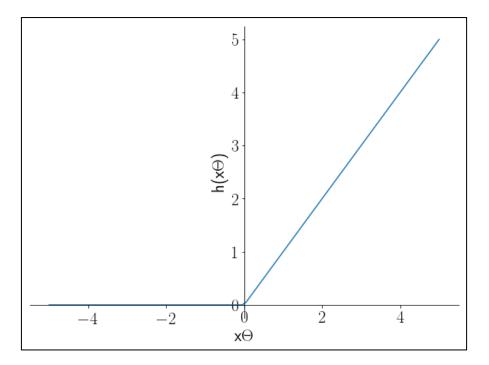


Figure 5.9: Output of ReLU

array([-5. ,	-4.8989899 ,	-4.7979798 ,	-4.6969697 ,	-4.5959596 ,
-4.49494949,	-4.39393939,	-4.29292929,	-4.19191919,	-4.09090909,
-3.98989899,	-3.88888889,	-3.78787879,	-3.68686869,	-3.58585859,
-3.48484848,	-3.38383838,	-3.28282828,	-3.18181818,	-3.08080808,
-2.97979798,	-2.87878788,	-2.7777778,	-2.67676768,	-2.57575758,
-2.47474747,	-2.37373737,	-2.27272727,	-2.17171717,	-2.07070707,
-1.96969697,	-1.86868687,	-1.76767677,	-1.66666667,	-1.56565657,

Figure 5.7: Printing the inputs

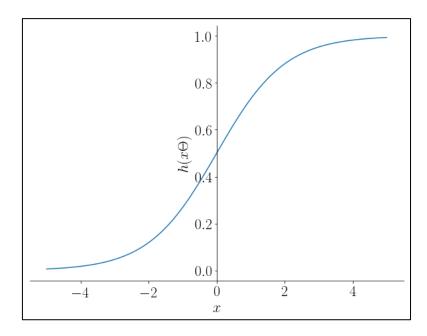
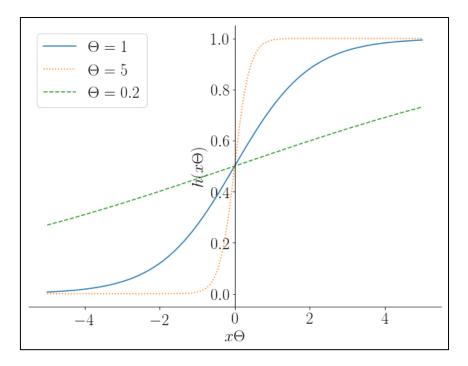
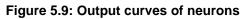


Figure 5.8: Plot of neurons versus inputs





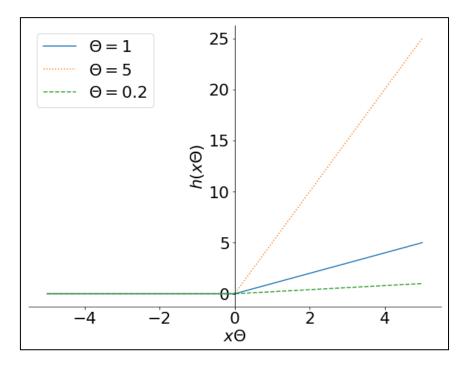


Figure 5.10: Expected output curves

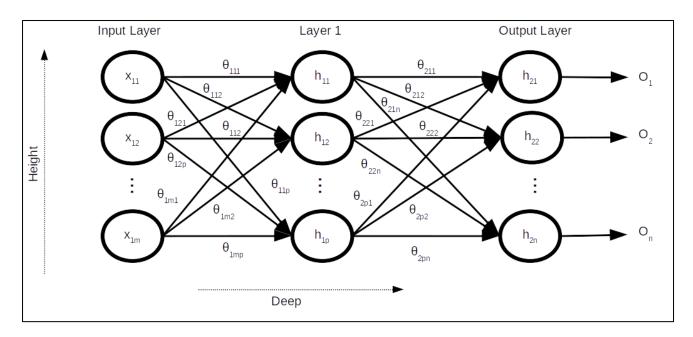


Figure 5.11: Simplified representation of a neural network

$h_{11}(x_{11}\theta_{111} + x_{12}\theta_{121} + \ldots + x_{1m}\theta_{1m1})$

Figure 5.12: Calculating the output of the last node

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 500)	512500
dense_2 (Dense)	(None, 10)	5010
Total params: 517,510 Trainable params: 517,510 Non-trainable params: 0		

Figure 5.13: Structure and count of trainable parameters in the model

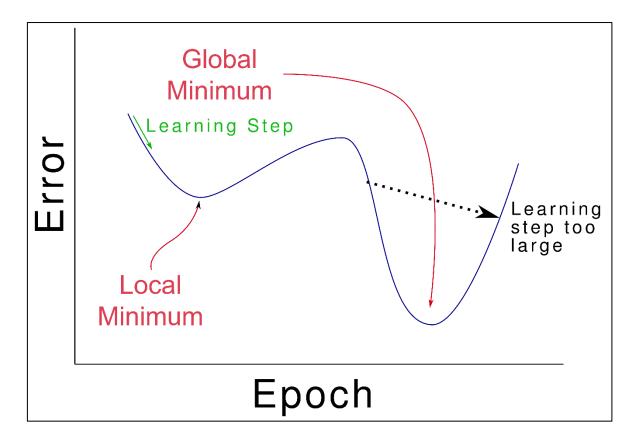
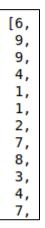


Figure 5.14: Selecting the correct learning rate (one epoch is one learning step)



	43, 126, 253,	105,	,	139,	142,	144],	
[250,	60, 254, 61,	211,	,	215,	255,	254],	dtype=uint8)

Figure 5.16: Content of the data key

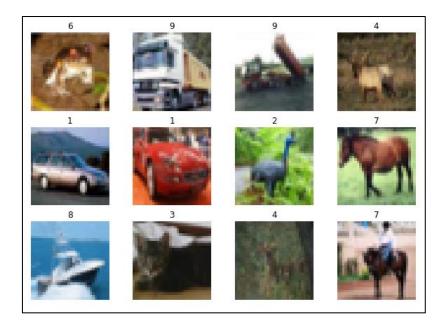


Figure 5.17: The first 12 images

{b'num_cases_per_batch': 10000,
<pre>b'label names': [b'airplane',</pre>
b'automobile',
b'bird',
b'cat',
b'deer',
b'dog',
b'frog',
b'horse',
b'ship',
b'truck'],
b'num vis': 3072}

Figure 5.18: Meaning of the labels

['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'frog', 'horse', 'ship', 'truck']

Figure 5.19: Printing the actual labels

frog, truck, truck, deer, automobile, automobile, bird, horse, ship, cat, deer, horse,

Figure 5.20: Labels of the first 12 images

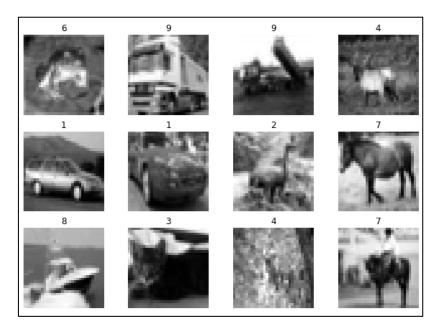


Figure 5.22: Displaying the first 12 images again.

Epoch 97/100		
10000/10000 [========================] - 2s 178us/step - loss: 0.4526	- acc:	0.8824
Epoch 98/100		
10000/10000 [==================] - 2s 176us/step - loss: 0.4488	- acc:	0.8871
Epoch 99/100		
10000/10000 [==================] - 2s 174us/step - loss: 0.4384	- acc:	0.8940
Epoch 100/100		
10000/10000 [========================] - 2s 170us/step - loss: 0.4322	- acc:	0.8955
<keras.callbacks.history 0x7f12b3c7b978="" at=""></keras.callbacks.history>		

Figure 5.23: Training the model

array([[2.72101886e-03,	2.82521220e-03, 5.80681080e-04,	2.00835592e-03,
4.87272721e-03,	1.73771027e-02, 9.62930799e-01,	5.69747109e-03,
7.23911216e-04,	2.62686226e-04],	
[3.00214946e-04,	1.14106536e-01, 4.17048521e-02,	1.38805415e-02,
-	3.11067980e-02, 1.02459533e-04,	2.45292974e-03,
-	7.89529204e-01],	
	7.90050399e-05, 4.03187078e-05,	-
-	3.01616683e-06, 5.77264291e-06,	3.29075777e-03,
2.98287741e-05,	9.94524956e-01],	

Figure 5.24: Printing the predictions

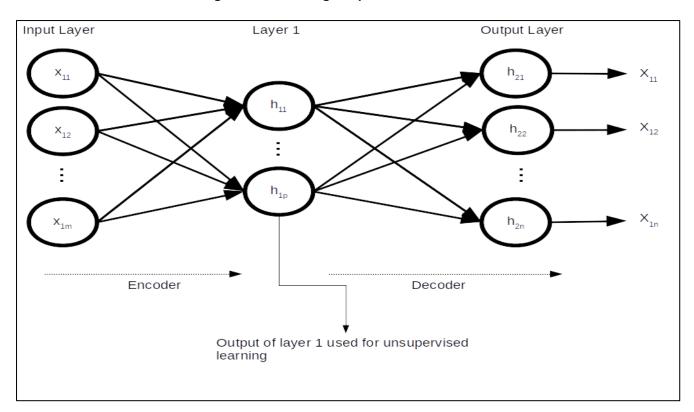


Figure 5.25: Simple autoencoder network architecture

Epoch 95/100						
10000/10000 [=================================	-	4s	416us/step	-	loss:	0.5779
Epoch 96/100						
10000/10000 [======]	-	4s	418us/step	-	loss:	0.5777
Epoch 97/100						
10000/10000 [=================================	-	4s	434us/step	-	loss:	0.5778
Epoch 98/100			•			
10000/10000 [=================================	-	4s	428us/step	-	loss:	0.5776
Epoch 99/100			•			
10000/10000 [=================================	-	4s	438us/step	-	loss:	0.5775
Epoch 100/100						
10000/10000 [=================================	-	4s	404us/step	-	loss:	0.5775
			,			
<keras.callbacks.history 0x7fb44d6fe8d0="" at=""></keras.callbacks.history>						

Figure 5.26: Training the model

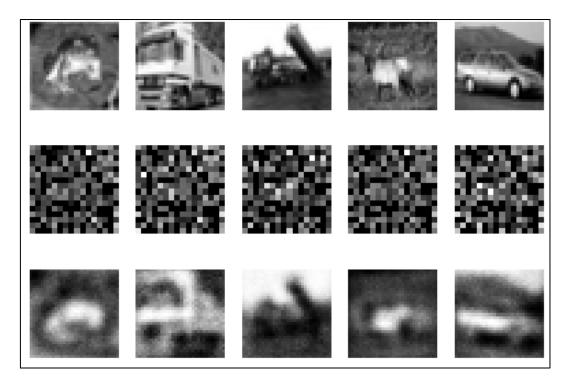


Figure 5.27: Output of simple autoencoder

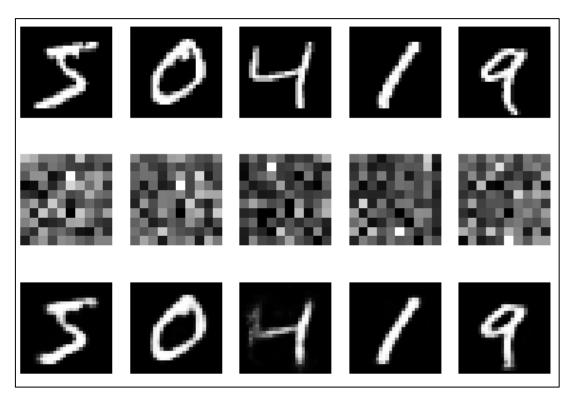


Figure 5.28: Expected plot of original image, the encoder output, and the decoder

Epoch 93/100	
10000/10000 [=================================	=] - 9s 945us/step - loss: 0.5805
Epoch 94/100	
10000/10000 [=================================	=] - 10s 965us/step - loss: 0.5806
Epoch 95/100	
10000/10000 [=================================	=] - 10s 969us/step - loss: 0.5807
Epoch 96/100	
10000/10000 [=================================	=] - 10s 968us/step - loss: 0.5804
Epoch 97/100	
10000/10000 [=================================	=] - 10s 1ms/step - loss: 0.5803
Epoch 98/100	
10000/10000 [=================================	=] - 10s 971us/step - loss: 0.5804
Epoch 99/100	
10000/10000 [=================================	=] - 10s 970us/step - loss: 0.5802
Epoch 100/100	
10000/10000 [=================================	=] - 10s 972us/step - loss: 0.5799

Figure 5.29: Training the model

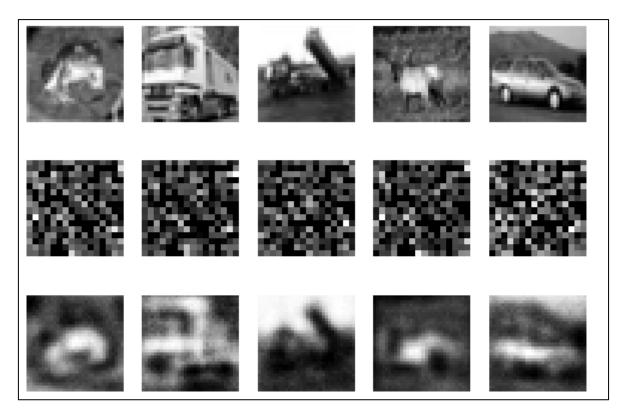


Figure 5.30: Output of multi-layer autoencoder

1	1
1	2

Figure 5.31: Demonstration of sample matrix

Epoch 1/20		
-	[=====] - 21s 2ms/step - loss: 0.59	934
Epoch 2/20		
-	[=====] - 21s 2ms/step - loss: 0.56	087
Epoch 3/20		
-	[=====] - 22s 2ms/step - loss: 0.56	522
Epoch 4/20	[] 21c 2mc/stop] 2cc. 0 5/	600
	[=====] - 21s 2ms/step - loss: 0.56	200
Epoch 5/20	[=====] - 21s 2ms/step - loss: 0.55	500.
	[======] - 215 2ms/step - toss: 0.5	590:
Epoch 6/20	[=====] - 21s 2ms/step - loss: 0.55	501
Epoch 7/20	[] - 215 2ms/step - toss: 0.5.	100
	[=====] - 21s 2ms/step - loss: 0.55	578
Epoch 8/20	[] - 213 2m3/3tep - t033. 0.5.	,,0
	[=====] - 21s 2ms/step - loss: 0.55	572
Epoch 9/20	[] 213 2m3/3(cp = (033, 0.5	112
	[==================] - 21s 2ms/step - loss: 0.55	566
Epoch 10/20		
	[=====] - 21s 2ms/step - loss: 0.55	557
Epoch 11/20		
	[=====] - 21s 2ms/step - loss: 0.55	553
Epoch 12/20		
10000/10000	[=====] - 21s 2ms/step - loss: 0.55	552
Epoch 13/20		
10000/10000	[=====] - 21s 2ms/step - loss: 0.55	551
Epoch 14/20		
10000/10000	[=====] - 22s 2ms/step - loss: 0.55	543
Epoch 15/20		
-	[=====] - 22s 2ms/step - loss: 0.55	544
Epoch 16/20		
-	[=====] - 22s 2ms/step - loss: 0.55	548
Epoch 17/20		
-	[=====] - 22s 2ms/step - loss: 0.5	541
Epoch 18/20		
10000/10000		539
Epoch 19/20		530
-	[=====] - 22s 2ms/step - loss: 0.55	228
Epoch 20/20		520
10000/10000	[=====] - 22s 2ms/step - loss: 0.55	229

Figure 5.3	2: Training	g the model
------------	-------------	-------------

Figure 5.33: The original image, the encoder output, and the decoder

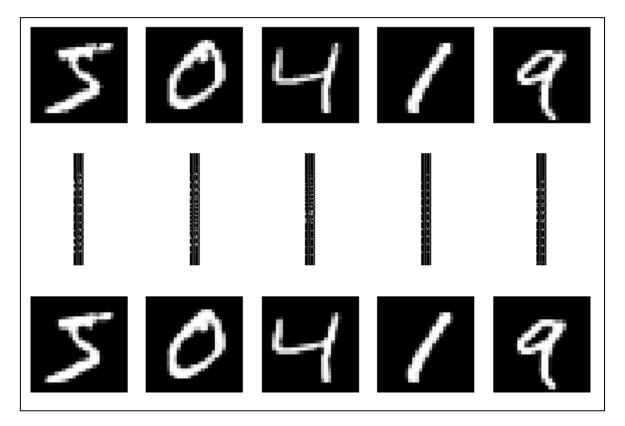


Figure 5.34: Expected original image, the encoder output, and the decoder

Lesson 6: t-Distributed Stochastic Neighbor Embedding (t-SNE)

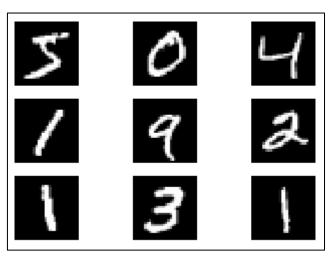


Figure 6.10: MNIST data sample

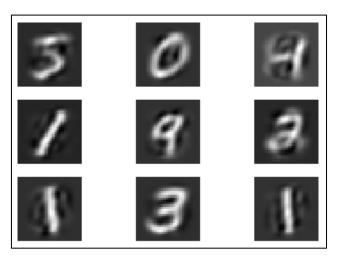


Figure 6.11: MNST reduced using PCA to 30 components

i j $\sum_{i} p_{i}$ log-()=

Figure 6.12: Kullback-Leibler divergence.

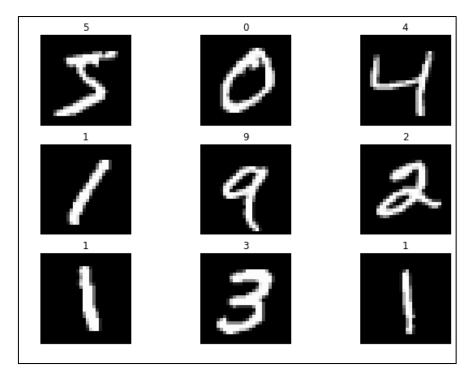


Figure 6.4: Output after loading the dataset

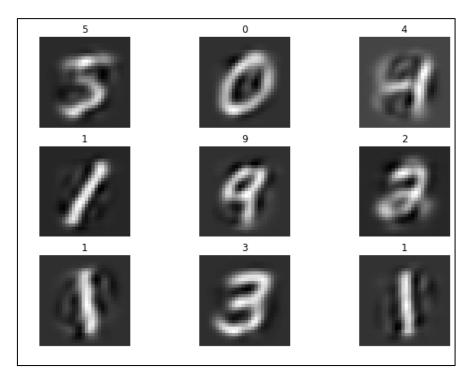


Figure 6.5: Visualizing the effect of reducing the dataset

```
TSNE(angle=0.5, early_exaggeration=12.0, init='random', learning_rate=200.0,
    method='barnes_hut', metric='euclidean', min_grad_norm=1e-07,
    n_components=2, n_iter=1000, n_iter_without_progress=300,
    perplexity=30.0, random_state=None, verbose=0)
```

Figure 6.6: Applying t-SNE to PCA-transformed data

[t-SNE] Computing 91 nearest neighbors
[t-SNE] Indexed 10000 samples in 0.016s
<pre>[t-SNE] Computed neighbors for 10000 samples in 5.454s</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 1000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 2000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 3000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 4000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 5000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 6000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 7000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 8000 / 10000</pre>
<pre>[t-SNE] Computed conditional probabilities for sample 9000 / 10000</pre>
[t-SNE] Computed conditional probabilities for sample 10000 / 10000
[t-SNE] Mean sigma: 304.998835
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.546951
[t-SNE] KL divergence after 1000 iterations: 1.696535

Figure 6.7: Transforming the decomposed dataset

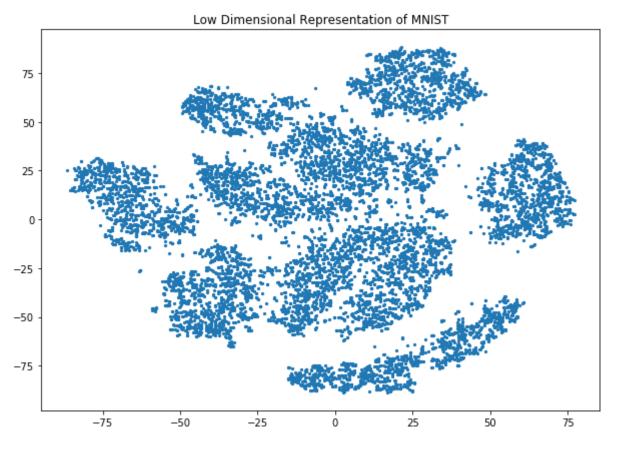


Figure 13.8: 2D representation of MNIST (no labels).

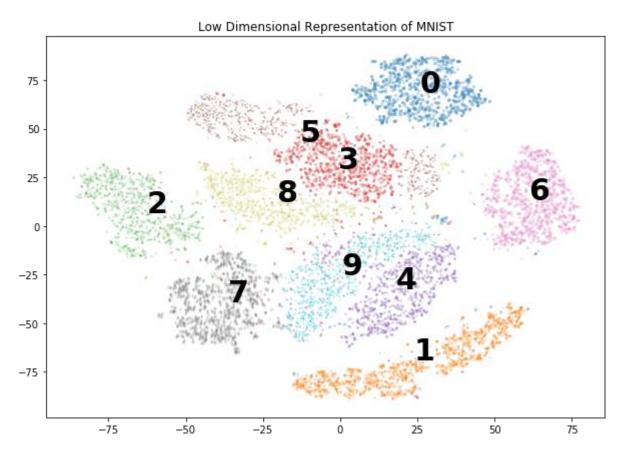


Figure 6.9: 2D representation of MNIST with labels.

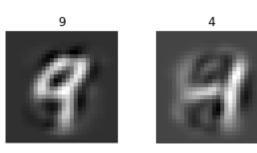


Figure 6.10: PCA images of nine.

Figure 6.11: Shape of number four

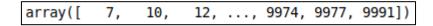


Figure 6.12: Index of threes in the dataset.

array([0,	1,	6,	11,	13,	14,	17,	18,	19,	21,	22,
		25,									
		42,									
		59,									

Figure 6.13: The threes with x value less than zero.

array([[-16.126516 , [-4.217844 , [-2.3769686,	31.871649],
[-6.4078546, [-10.40415 , [-8.813534 ,	

Figure 6.14: Coordinates away from the three cluster

Figure 6.15: Image of sample ten

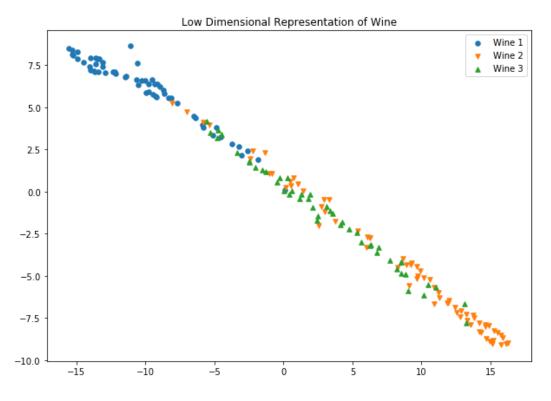


Figure 6.16: The expected plot

```
[t-SNE] Computing 10 nearest neighbors...
[t-SNE] Indexed 10000 samples in 0.018s..
[t-SNE] Computed neighbors for 10000 samples in 3.438s...
[t-SNE] Computed conditional probabilities for sample 1000 / 10000
[t-SNE] Computed conditional probabilities for sample 2000 / 10000
[t-SNE] Computed conditional probabilities for sample 3000 / 10000
[t-SNE] Computed conditional probabilities for sample 4000 / 10000
[t-SNE] Computed conditional probabilities for sample 5000 / 10000
[t-SNE] Computed conditional probabilities for sample 6000 / 10000
[t-SNE] Computed conditional probabilities for sample 7000 / 10000
[t-SNE] Computed conditional probabilities for sample 8000 / 10000
[t-SNE] Computed conditional probabilities for sample 9000 / 10000
[t-SNE] Computed conditional probabilities for sample 10000 / 10000
[t-SNE] Mean sigma: 165.134196
[t-SNE] KL divergence after 250 iterations with early exaggeration: 96.804878
[t-SNE] KL divergence after 1000 iterations: 1.850921
[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 10000 samples in 0.014s...
[t-SNE] Computed neighbors for 10000 samples in 5.129s...
[t-SNE] Computed conditional probabilities for sample 1000 / 10000
[t-SNE] Computed conditional probabilities for sample 2000 / 10000
[t-SNE] Computed conditional probabilities for sample 3000 / 10000
[t-SNE] Computed conditional probabilities for sample 4000 / 10000
[t-SNE] Computed conditional probabilities for sample 5000 / 10000
[t-SNE] Computed conditional probabilities for sample 6000 / 10000
[t-SNE] Computed conditional probabilities for sample 7000 / 10000
[t-SNE] Computed conditional probabilities for sample 8000 / 10000
[t-SNE] Computed conditional probabilities for sample 9000 / 10000
[t-SNE] Computed conditional probabilities for sample 10000 / 10000
[t-SNE] Mean sigma: 283.586365
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.399399
[t-SNE] KL divergence after 1000 iterations: 1.696069
[t-SNE] Computing 901 nearest neighbors...
[t-SNE] Indexed 10000 samples in 0.013s...
[t-SNE] Computed neighbors for 10000 samples in 7.993s...
[t-SNE] Computed conditional probabilities for sample 1000 / 10000
[t-SNE] Computed conditional probabilities for sample 2000 / 10000
[t-SNE] Computed conditional probabilities for sample 3000 / 10000
[t-SNE] Computed conditional probabilities for sample 4000 / 10000
[t-SNE] Computed conditional probabilities for sample 5000 / 10000
[t-SNE] Computed conditional probabilities for sample 6000 / 10000
[t-SNE] Computed conditional probabilities for sample 7000 / 10000
[t-SNE] Computed conditional probabilities for sample 8000 / 10000
[t-SNE] Computed conditional probabilities for sample 9000 / 10000
[t-SNE] Computed conditional probabilities for sample 10000 / 10000
[t-SNE] Mean sigma: 393.939776
[t-SNE] KL divergence after 250 iterations with early exaggeration: 67.932961
[t-SNE] KL divergence after 1000 iterations: 1.193975
```

Figure 6.17: Iterating through a model

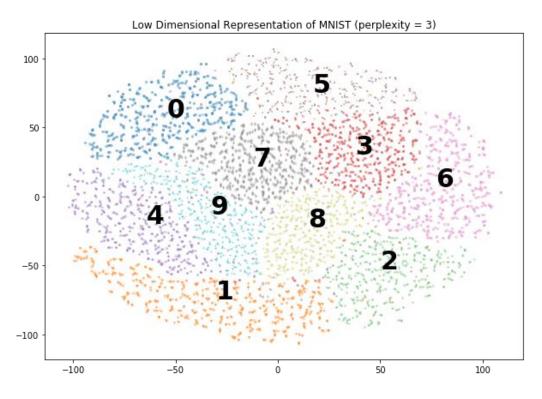
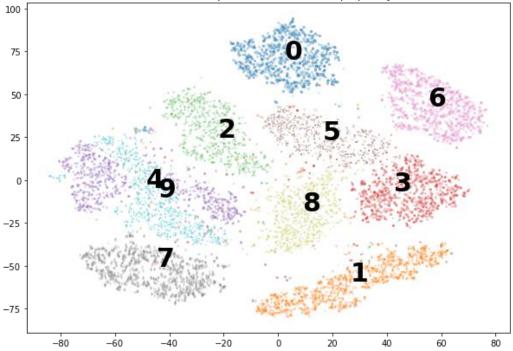


Figure 6.18: Plot of low perplexity value



Low Dimensional Representation of MNIST (perplexity = 30)

Figure 6.19: Plot after increasing perplexity by a factor of 10

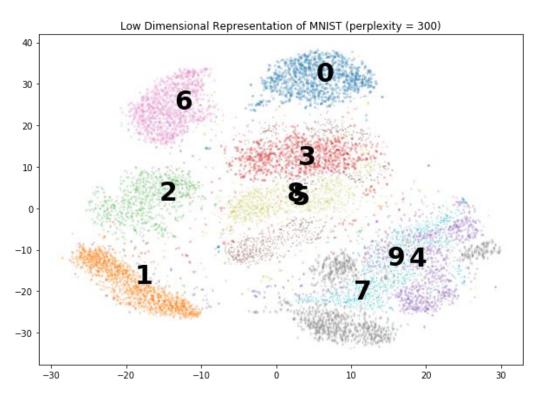
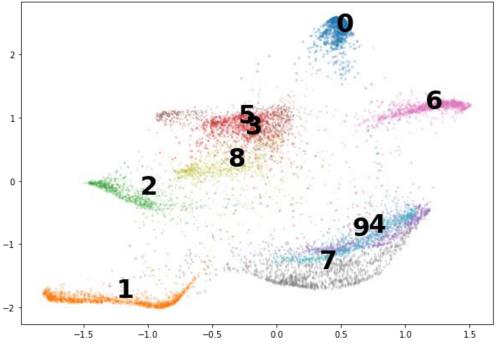


Figure 6.20: Increasing the perplexity value to 300



Low Dimensional Representation of MNIST (iterations = 250)

Figure 6.21: Plot after 250 iterations

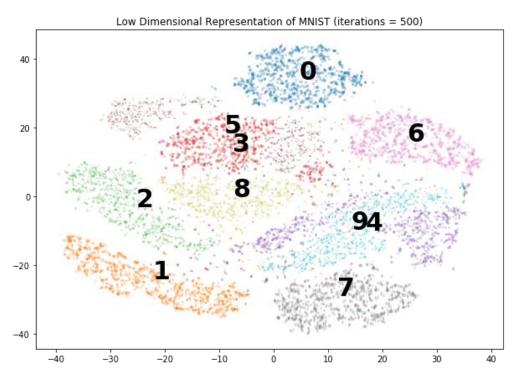
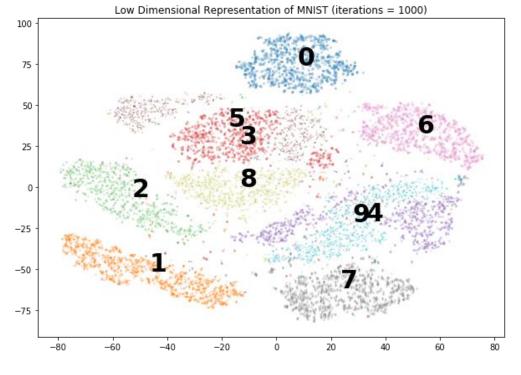
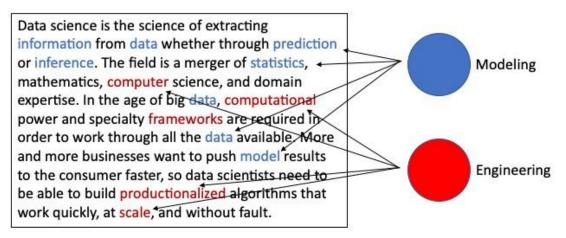


Figure 6.22: Plot after increasing the iterations to 500



Lesson 7: Topic Modeling



Library	Use		
langdetect	Used to detect the language of any text.		
matplotlib.pyplot	Used to do basic plotting.		
nltk	Used to do a variety of natural language processing tasks.		
numpy	Used to work with arrays and matrices.		
pandas	Used to work with data frames.		
pyLDAvis	Used to visualize the results of Latent Dirichlet Allocation models.		
pyLDAvis.sklearn	Used to run pyLDAvis with sklearn models.		
regex	Used to write and execute regular expressions.		
sklearn	Used to build machine learning models.		

Figure 7.2: Table showing different libraries and their use

```
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-3-a62286ae48f9> in <module>
    4 import numpy
    5 import pandas
----> 6 import pyLDAvis
    7 import pyLDAvis.sklearn
    8 import regex
ModuleNotFoundError: No module named 'pyLDAvis'
```

Figure 7.3: Library not installed error

[nltk_data] [nltk_data]	Unzipping corpora\wordnet.zip. Downloading package stopwords to
	C:\Users\rutujay\AppData\Roaming\nltk_data Unzipping corpora\stopwords.zip.
True	

Figure 7.4: Importing libraries and downloading dictionaries

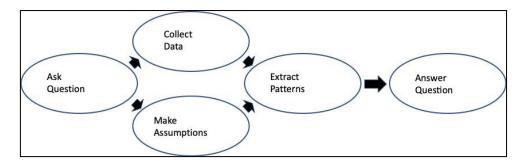


Figure 7.5: The generic topic modeling workflow

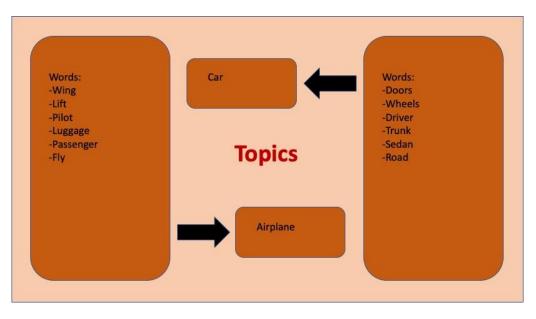


Figure 7.6: Inferring topics from word groupings

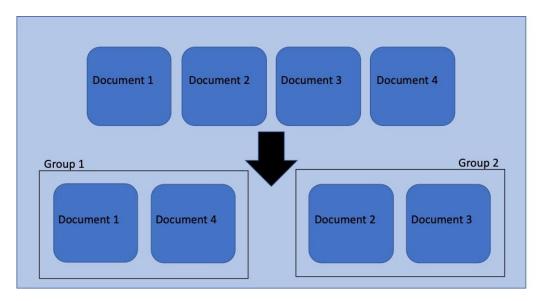


Figure 7.7: Sorting/categorizing documents

```
SHAPE:
(93239, 11)
COLUMN NAMES:
Index(['IDLink', 'Title', 'Headline', 'Source', 'Topic', 'PublishDate',
       'SentimentTitle', 'SentimentHeadline', 'Facebook', 'GooglePlus',
       'LinkedIn'],
     dtype='object')
HEAD:
                                                     Title \
   IDLink
0 99248.0 Obama Lays Wreath at Arlington National Cemetery
1 10423.0 A Look at the Health of the Chinese Economy
                                          Headline
                                                       Source
                                                                Topic \
0 Obama Lays Wreath at Arlington National Cemete... USA TODAY
                                                                obama
1 Tim Haywood, investment director business-unit... Bloomberg economy
          PublishDate SentimentTitle SentimentHeadline Facebook \
0 2002-04-02 00:00:00
                            0.000000
                                              -0.053300
                                                              -1
1 2008-09-20 00:00:00
                            0.208333
                                              -0.156386
                                                              -1
  GooglePlus LinkedIn
0
          -1
                    -1
1
          -1
                    -1
```

Figure 7.8: Raw data

HEADLINES: ['Obama Lays Wreath at Arlington National Cemetery. President Barack Obama has laid a wreath at the Tomb of the Unknowns to hon or', 'Tim Haywood, investment director business-unit head for fixed income at Gam, discusses the China beige book and the state of the economy.', "Nouriel Roubini, NYU professor and chairman at Roubini Global Economics, explains why the global economy is n't facing the same conditions", "Finland's economy expanded marginally in the three months ended December, after contracting i n the previous quarter, preliminary figures from Statistics Finland showed Monday. ", 'Tourism and public spending continued to boost the economy in January, in light of contraction in private consumption and exports, according to the Bank of Thailand dat a. ']

LENGTH: 93239

Figure 7.9: A list of headlines

Over 100 attendees expected to see latest version of Microsoft Dynamics SL and Dynamics GP (PRWeb February 29, 2016) Read the f ull story at http://www.prweb.com/releases/2016/03/prweb13238571.htm

Figure 7.10: The fifth headline

DETECTED LANGUAGE: en

Figure 7.11: Detected language

['Over', '100', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'Microsoft', 'Dynamics', 'SL', 'and', 'Dynamic s', 'GP', '(PRWeb', 'February', '29,', '2016)', 'Read', 'the', 'full', 'story', 'at', 'http://www.prweb.com/releases/2016/03/pr web13238571.htm', '']

Figure 7.12: String split using white spaces

['Over', '100', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'Microsoft', 'Dynamics', 'SL', 'and', 'Dynamic s', 'GP', '(PRWeb', 'February', '29,', '2016)', 'Read', 'the', 'full', 'story', 'at', 'URL', '']

Figure 7.13: URLs replaced with the URL string

['Over', '100', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'Microsoft', 'Dynamics', 'SL', 'and', 'Dynamic s', 'GP', 'PRWeb', 'February', '29', '2016', 'Read', 'the', 'full', 'story', 'at', 'URL', '']

Figure 7.14: Punctuation replaced with newline character

['Over', '', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'Microsoft', 'Dynamics', 'SL', 'and', 'Dynamics', 'GP', 'PRWeb', 'February', '', '', 'Read', 'the', 'full', 'story', 'at', 'URL', '']

Figure 7.15: Numbers replaced with empty strings

['over', '', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'microsoft', 'dynamics', 'sl', 'and', 'dynamics', 'gp', 'prweb', 'february', '', '', 'read', 'the', 'full', 'story', 'at', 'URL', '']

Figure 7.16: Uppercase letters converted to lowercase

['over', 'attendees', 'expected', 'to', 'see', 'latest', 'version', 'of', 'microsoft', 'dynamics', 'sl', 'and', 'dynamics', 'g p', 'prweb', 'february', 'read', 'the', 'full', 'story', 'at']

Figure 7.17: String URL removed

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'youre', 'youve', 'youl', 'your', 'yours', 'yours', 'yours', 'yours', 'yours', 'the', 'the', 'the', 'this', 'this', 'this', 'this', 'this', 'the', 'th

Figure 7.18: List of stop words

['attendees', 'expected', 'see', 'latest', 'version', 'microsoft', 'dynamics', 'sl', 'dynamics', 'gp', 'prweb', 'february', 're ad', 'full', 'story']

Figure 7.19: Stop words removed from the headline

['attendee', 'expect', 'see', 'latest', 'version', 'microsoft', 'dynamics', 'sl', 'dynamics', 'gp', 'prweb', 'february', 'rea d', 'full', 'story']

Figure 7.20: Output after performing lemmatization

['attendee', 'expect', 'latest', 'version', 'microsoft', 'dynamics', 'dynamics', 'prweb', 'february', 'story']

Figure 7.21: Headline number five post-cleaning

HEADLINES:

ntADLINES: [['obama', 'wreath', 'arlington', 'national', 'cemetery', 'president', 'barack', 'obama', 'wreath', 'unknown', 'honor'], ['hayw ood', 'investment', 'director', 'businessunit', 'income', 'discus', 'china', 'beige', 'state', 'economy'], ['nouriel', 'roubin i', 'professor', 'chairman', 'roubini', 'global', 'economics', 'explain', 'global', 'economy', 'facing', 'conditions'], ['finla nd', 'economy', 'expand', 'marginally', 'three', 'month', 'december', 'contracting', 'previous', 'quarter', 'preliminary', 'fig ure', 'statistics', 'finland', 'monday'], ['tourism', 'public', 'spending', 'continue', 'boost', 'economy', 'january', 'light', 'contraction', 'private', 'consumption', 'export', 'accord', 'thailand']]

LENGTH: 92948

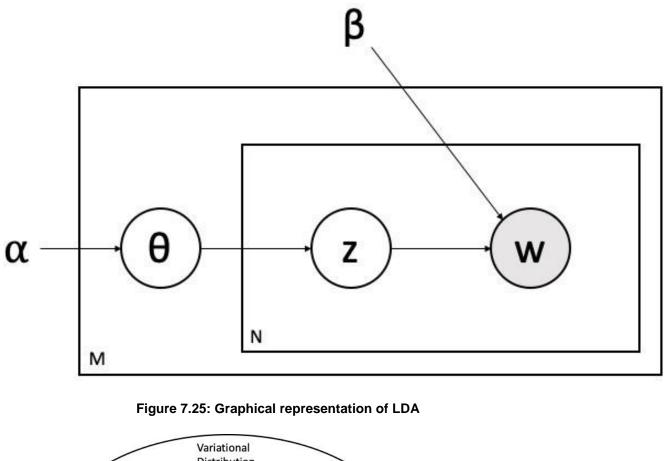
Figure 7.22: Headline and its length

['obama wreath arlington national cemetery president barack obama wreath unknown honor', 'haywood investment director businessu nit income discus china beige state economy', 'nouriel roubini professor chairman roubini global economics explain global econo my facing conditions', 'finland economy expand marginally three month december contracting previous quarter preliminary figure statistics finland monday', 'tourism public spending continue boost economy january light contraction private consumption expor t accord thailand', 'attendee expect latest version microsoft dynamics dynamics prweb february story', 'ramallah february pales tine liberation organization sectretarygeneral erekat thursday express concern kenyan president uhuru kenyattas visit jerusalem jordan valley', 'first michelle obama speak state white house washington wednesday interactive student workshop musical legacy charles student school community organization across country participate quotin performance white housequot series', 'hancock c ounty early monday morning family years', 'delhi feb29 technology giant microsoft target rival apple series focusing windows gr oss windows machine']

Figure 7.23: Headlines cleaned for modeling

['running shoes extra', 'class crunch intense workout pulley system', 'thousand natural product', 'natural product ex plore beauty supplement', 'fitness weekend south beach spark activity', 'kayla harrison sacrifice', 'sonic treatment alzheimers disease', 'ultrasound brain restore memory alzheimers needle onlyso farin mouse', 'apple researchkit reall y medical research', 'warning chantix drink taking might remember']

Figure 7.24: Tweets cleaned for modeling



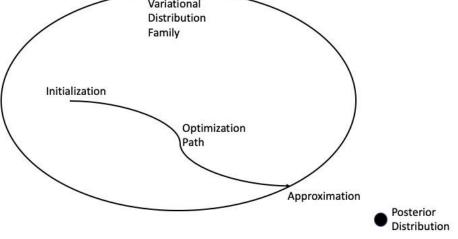


Figure 7.26: The variational inference process

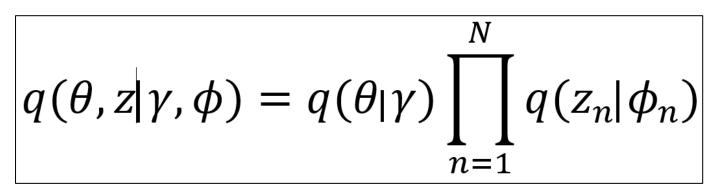


Figure 7.27: Formula for the family of distributions, q

407)	1
88)	1
643)	1
557)	1
572)	2
	643) 557)

$PP = P(w_1, \dots, w_m)^{-1/m}$

Figure 7.29: Formula of perplexity

	Number O	f Topics	Perplexity Score
0		1	510.011710
1		2	464.310162
2		3	413.054650
3		4	431.545934
4		6	511.728157
5		8	542.678576
6		10	572.124718

Figure 7.30: Data frame containing number of topics and perplexity score

```
<matplotlib.axes._subplots.AxesSubplot at 0x1ebe05b15f8>
```

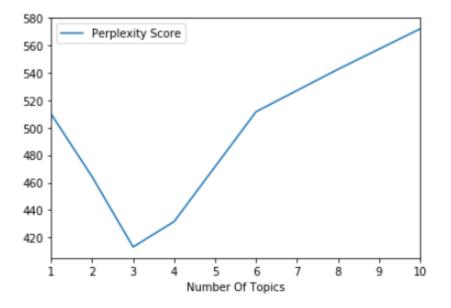


Figure 7.31: Line plot view of perplexity as a function of the number of topics

Figure 7.32: LDA model

(92948, 3) [[0.90423071 0.04761949 0.0481498] [0.0449056 0.04292327 0.91217113] [0.0435693 0.0441942 0.91223649] ... [0.20977116 0.03942095 0.75080789] [0.09239268 0.07121637 0.83639094] [0.20062764 0.41458136 0.384791]]

Figure 7.33: Topic-document matrix and its dimensions

```
(3, 1000)
[[3.67812459e-01 3.83046413e-01 3.79939561e-01 ... 3.48448881e-01
1.18665576e+02 4.62012727e+02]
[3.36269915e-01 2.72144107e+02 2.61257455e+01 ... 3.35946774e-01
2.05558903e+02 3.94048139e-01]
[2.74795972e+02 4.27720110e-01 1.89390109e+02 ... 2.31713244e+02
1.79236579e+02 4.10569467e-01]]
```

Figure 7.34: Word-topic matrix and its dimensions

	Tania	T / - 4	T
	Topic0	Topic1	Topic2
Word0	(0.1009, obama)	(0.1025, microsoft)	(0.0874, economy)
Word1	(0.0874, president)	(0.0235, windows)	(0.0301, economic)
Word2	(0.0502, barack)	(0.0229, company)	(0.0161, palestine)
Word3	(0.0157, obamas)	(0.0185, microsofts)	(0.0152, growth)
Word4	(0.015, washington)	(0.0155, announce)	(0.0129, global)
Word5	(0.014, state)	(0.014, today)	(0.0126, palestinian)
Word6	(0.013, house)	(0.0105, release)	(0.011, government)
Word7	(0.0119, white)	(0.0088, business)	(0.0103, minister)
Word8	(0.0117, administration)	(0.0088, update)	(0.0101, world)
Word9	(0.0087, visit)	(0.0075, surface)	(0.01, china)

Figure 7.35: Word-topic table

Topic0 (0.9776, March 13 marked the 75th anniversary ... Doc0 (0.9776, Preying on the minds of financial mar... Doc1 (0.9772, Obama has narrowed his list to 3 nomi... Doc2 Doc3 (0.9768, Member nations of the Organization of ... (0.9767, Malia Obama is 17 and probably wants ... Doc4 Doc5 (0.9765, Democratic presidential front-runner ... (0.9758, Chinese Premier Li Keqiang pledged th... Doc6 (0.9756, UNITED NATIONS """ France said Friday... Doc7 Doc8 (0.9756, French Foreign Minister Laurent Fabiu... (0.9755, KANSAS CITY """ Missouri Republican a... Doc9 Topic1 (0.9776, That appears to be the thinking behin... Doc0 Doc1 (0.9764, Arundhati Bhattacharya recognises tha... Doc2 (0.9757, France's fragile economy has cooled i... (0.9755, Software maker Microsoft Corp is sell... Doc3 (0.9755, WASHINGTON (AP) - President Barack Ob... Doc4 (0.9754, France's Palestine peace plan is part... Doc5 Doc6 (0.9752, Patent trolls drain \$1.5 billion a we... Doc7 (0.9751, Rancho Mirage, California (CNN) Presi... (0.975, 2 economy could be sucked into a Japan... Doc8 (0.975, Economist with the University of Ghana... Doc9 Topic2 Doc0 (0.9783, President Barack Obama drinks water a... (0.9781, Ifo economist Klaus Wohlrabe told Reu... Doc1 Doc2 (0.978, Microsoft's latest Windows Phone, the ... (0.978, Microsoft CEO Satya Nadella discussed ... Doc3 (0.9779, People's Bank of China Governor Zhou ... Doc4 (0.9778, President Obama welcomed the Super Bo... Doc5 (0.9778, The UK is facing a digital skills cri... Doc6 (0.9778, Microsoft said Monday that it is buyi... Doc7 (0.9778, Microsoft has been on the acquisition... Doc8 (0.9777, Twitter, Microsoft, Facebook and YouT... Doc9

Figure 7.36: Topic-document table

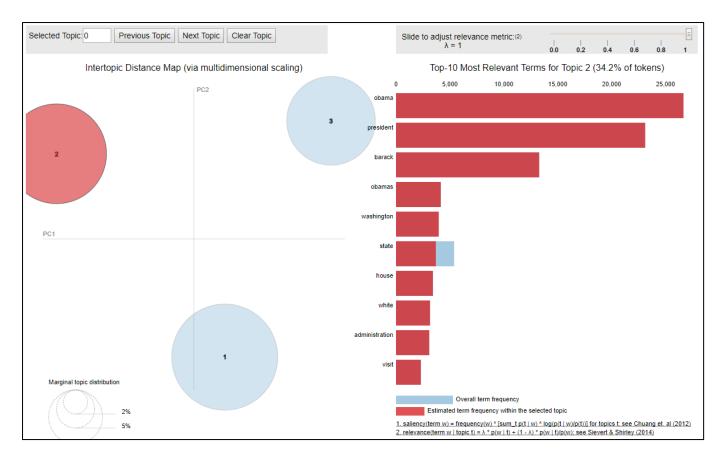


Figure 7.37: A histogram and biplot for the LDA model

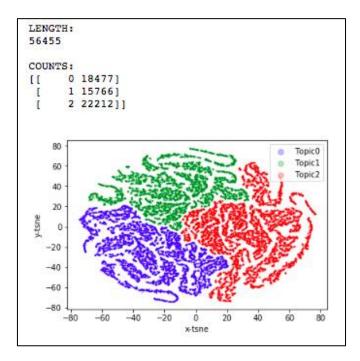


Figure 7.39: LDA model

	Topic0	Topic1	Topic2 \
Word0	(0.0344, palestine)	(0.1332, obama)	(0.1062, economy)
Word1	(0.0283, washington)	(0.1155, president)	(0.0365, economic)
Word2	(0.0269, palestinian)	(0.0664, barack)	(0.0185, growth)
Word3	(0.0244, house)	(0.0208, obamas)	(0.017, world)
Word4	(0.0225, white)	(0.0154, administration)	(0.0157, global)
Word5	(0.0214, tuesday)	(0.0122, state)	(0.0126, minister)
Word6	(0.0185, people)	(0.0107, trump)	(0.0122, china)
Word7	(0.0162, american)	(0.0102, republican)	(0.0114, percent)
Word8	(0.0149, unite)	(0.0087, union)	(0.0106, government)
Word9	(0.0146, state)	(0.0087, visit)	(0.0103, market)
	Topic3		
Word0	(0.1155, microsoft)		
Word1	(0.0265, windows)		
Word2	(0.0259, company)		
Word3	(0.0209, microsofts)		
Word4	(0.0171, announce)		
Word5	(0.0158, today)		
Word6	(0.0115, release)		
Word7	(0.0099, update)		
Word8	(0.0091, business)		
Word9	(0.0084, surface)		

Figure 7.40: The word-topic table using the four-topic LDA model

Topic0
Doc0 (0.9618, President Barack Obama on Friday will
Doc1 (0.9494, NEW YORK (Reuters) - Facing a hostile
Doc2 (0.9459, The Personalization Gallery offers a
Doc3 (0.9459, In the budget he plans to release tom
Doc4 (0.9458, When Microsoft introduced its new on
Doc5 (0.9369, President Barack Obama speaks at the
Doc6 (0.9369, In an email interview, Adam Fforde, p
Doc7 (0.9358, A panel of Fox Business pundits excor
Doc8 (0.9317, President Obama talked about efforts
Doc9 (0.9315, An Israeli soldier takes aim during c
Topicl
Doc0 (0.9686, Artists including Missy Elliott, Kell
Docl (0.9686, President Barack Obama has chosen a n
Doc2 (0.9686, WASHINGTON - President Barack Obama h
Doc3 (0.9671, Plouffe, who managed President Obama'
Doc4 (0.9671, is dragging the economy through the
Doc5 (0.967, President Obama challenged the content
Doc6 (0.9578, While many people opt for social medi
Doc7 (0.9558, WASHINGTON """ President Barack Obama
Doc8 (0.9558, KIEV, March 16. /TASS/. Overwhelming
Doc9 (0.9557, Premier Li Keqiang said Wednesday tha
Topic2
Doc0 (0.9739, WASHINGTON """ President Obama on Sat Doc1 (0.9739, TULKARM, November 29, 2015 (WAFA) """
Doc2 (0.9729, Chris Christie boasted that he banned
Doc3 (0.9729, CHANTILLY, Va. """ President Barack O
Doc4 (0.9728, As Microsoft's mobile platform contin
Doc5 (0.9714, Its growth estimate for 2015-16 has j
Doc6 (0.9709, The rivalry between Sony and Microsof
Doc7 (0.9706, Kuwait's economy contracted last year
Doc8 (0.9706, Kuwait's economy contracted last year
Doc9 (0.9698, The economic situation in Europe is 1
Topic3
Doc0 (0.9749, US President Barack Obama has been at
Doc1 (0.9729, US President Barack Obama on Wednesda
Deel (0.072) 2 second sould be suched into a
Doc2 (0.9721, 2 economy could be sucked into a Japa Doc3 (0.9721, """When I began working on this conce
Doc3 (0.9721, """When I began working on this conce
Doc3 (0.9721, """When I began working on this conce Doc4 (0.9721, The Estonian economy was also positiv Doc5 (0.9718, Japan's surprise, albeit modest, meas
Doc3 (0.9721, """When I began working on this conce Doc4 (0.9721, The Estonian economy was also positiv Doc5 (0.9718, Japan's surprise, albeit modest, meas Doc6 (0.9711, The importance of a first good impres Doc7 (0.971, The Obama administration on Friday ask
Doc3 (0.9721, """When I began working on this conce Doc4 (0.9721, The Estonian economy was also positiv Doc5 (0.9718, Japan's surprise, albeit modest, meas Doc6 (0.9711, The importance of a first good impres

Figure 7.41: The document-topic table using the four-topic LDA model

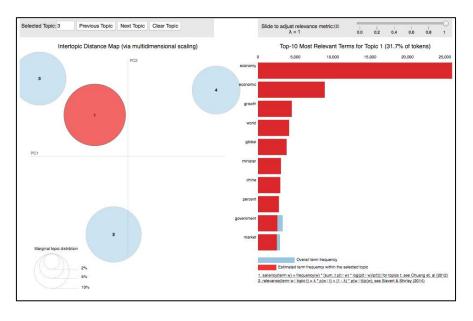
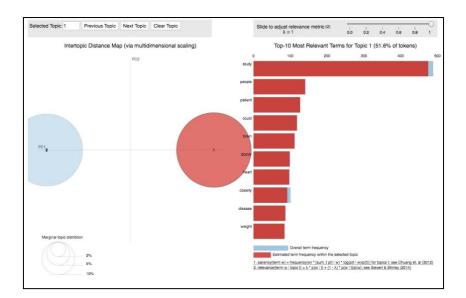
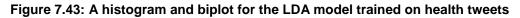


Figure 7.42: A histogram and biplot describing the four-topic LDA model





(0,	572)	0.4507592105469774
(0,	557)	0.4666029379072775
(0,	643)	0.2348310160024775
(0,	88)	0.2807099986206347
(0,	407)	0.667198713308869

Figure 7.44: Output of the TF-IDF vectorizer

Documents		Topics		
Words	~	Words	×	Documents ອ ຍຸ kxm
nxm		nxk		

Figure 7.45: The matrix factorization

 $H^{i+1} \leftarrow H^i \frac{(W^i)^T X}{(W^i)^T W^i H^i}$

Figure 7.46: First update rule

 $X(H^{i+1})^T$ w^{i+1} $\leftarrow w^{i}$ $W^{i}H^{i+1}(H^{i+1})^{T}$

Figure 7.47: Second update rule

NMF(alpha=0.1, beta_loss='frobenius', init='nndsvda', l1_ratio=0.5, max_iter=200, n_components=4, random_state=0, shuffle=False, solver='mu', tol=0.0001, verbose=0)

Figure 7.48: Defining the NMF model

1	Topic2	Topicl	Topic0	
	(0.0869, microsoft)	(0.0628, economy)	(0.0696, obama)	Word0
	(0.0306, windows)	(0.0212, economic)	(0.0646, president)	Word1
	(0.0196, company)	(0.0179, growth)	(0.0484, barack)	Word2
	(0.0162, announce)	(0.0144, global)	(0.0157, washington)	Word3
	(0.0124, microsofts)	(0.0128, china)	(0.0149, house)	Word4
	(0.0118, update)	(0.0111, percent)	(0.0144, white)	Word5
	(0.0106, release)	(0.0109, world)	(0.0127, obamas)	Word6
	(0.01, today)	(0.0097, quarter)	(0.0109, state)	Word7
	(0.0096, surface)	(0.0093, market)	(0.0096, administration)	Word8
	(0.0085, cloud)	(0.0086, country)	(0.0081, first)	Word9
			Topic3	
			(0.0881, palestine)	Word0
			(0.0766, palestinian)	Wordl
			(0.0309, israeli)	Word2
			(0.0278, israel)	Word3
			(0.0172, state)	Word4
			(0.0094, international)	Word5
			(0.0092, ramallah)	Word6
			(0.0089, minister)	Word7
			(0.0079, unite)	Word8
			(0.0078, force)	Word9

Figure 7.49: The word-topic table containing probabilities

```
Topic0
Doc0 (0.0844, NCRI - The Iranian regime's former Mi...
      (0.0844, South Africa's economy shrank sharply ...
Doc1
      (0.0844, Horacio Gutierrez, Microsoft's genera...
Doc2
Doc3
      (0.0844, A Microsoft recruiting event at the U...
Doc4
      (0.0844, The Federal Reserve's recent rate hik ...
Doc5
      (0.0844, President Barack Obama received a chi ...
      (0.0844, President Obama met with gun control ...
Doc6
      (0.0844, (CNN) """Leaders gathered in Paris to ...
Doc7
      (0.0844, Fears have returned that China's debt ...
Doc8
Doc9
     (0.0844, Russia is not ready to share US Presi ...
                                                    Topic1 \
Doc0 (0.0677, Both China's central bank and a respe...
Doc1
      (0.0677, TAMPA -- Sen. Marco Rubio (R-Fla.) sa...
      (0.0677, WASHINGTON - President Barack Obama i...
Doc2
      (0.0677, The U.S. Supreme Court on Friday agre...
(0.0677, WASHINGTON"" "President Barack Obama w...
Doc3
Doc4
      (0.0677, One of the challenges for writing app...
Doc5
     (0.0677, President Barack Obama speaks during ...
Doc6
Doc7
           (0.0677, The U.S. economy is humming again. )
      (0.0677, WASHINGTON - President Barack Obama s...
Doc8
Doc9
      (0.0677, Microsoft to shut down portal site MS...
                                                    Topic2 \
Doc0 (0.0836, Colin Fenton, managing partner at Bla...
Doc1 (0.0836, As I study in Canada, I am exposed to...
      (0.0836, Ban Ki Mun: Sramota me zbog Izraela i...
Doc2
Doc3
      (0.0836, But the argument that Microsoft is wi...
Doc4
      (0.0836, 6:55 p.m. On the heels of Donald Trum...
      (0.0836, Colorado's economy had the fourth str ...
Doc5
      (0.0836, Back in September 2014 I wrote an art...
Doc6
Doc7
      (0.0836, During its developer conference, Micr ...
Doc8
      (0.0836, Speaking in Japan after a summit with ...
Doc9 (0.0836, Korea's exports marked the worst slum ...
                                                    Topic3
Doc0 (0.1078, SYDNEY, April 18 (Xinhua) -- Australi...
      (0.1078, It's both fascinating and ironic how ...
Doc1
Doc2
      (0.0856, German government spending on refugee ...
      (0.0852, President Barack Obama, center, walks...
Doc3
      (0.0842, The gig economy tends to divide opini ...
Doc4
Doc5
      (0.0828, I hope the Committee on the Future Ec...
Doch
      (0.0815, President Obama has spent the last se...
Doc7
      (0.0815, OTTAWA -- Barack Obama has arrived in...
Doc8
      (0.0815, For Max Wolff, chief economist at Man ...
Doc9 (0.0815, Just over a year ago, Microsoft annou...
```

Figure 7.50: The document-topic table containing probabilities

```
(92948, 4)

[[5.12543656e-02 3.63195740e-15 3.10455307e-34 7.82654193e-16]

[7.41162473e-04 2.04135415e-02 6.83519643e-15 2.13620923e-03]

[2.96652472e-15 1.94116773e-02 4.78856726e-21 1.20646716e-18]

...

[9.58970155e-06 3.41045363e-03 6.15591120e-04 3.23909905e-02]

[6.37006094e-07 1.31884850e-07 3.39453370e-08 6.14080053e-02]

[4.46386338e-05 1.15780717e-04 1.84769162e-02 2.00666640e-03]]
```

```
Figure 7.51: Shape and example of data
```

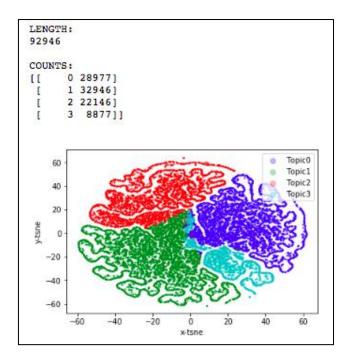


Figure 7.52: t-SNE plot with metrics summarizing the topic distribution across the corpus

	Topic0	Topicl
Word0	(0.3726, study)	(0.5974, latfit)
Wordl	(0.0259, cancer)	(0.0477, steps)
Word2	(0.0208, people)	(0.0448, today)
Word3	(0.0185, health)	(0.0404, exercise)
Word4	(0.0184, obesity)	(0.0274, healthtips)
Word5	(0.0182, brain)	(0.0257, workout)
Word6	(0.0173, suggest)	(0.0204, getting)
Word7	(0.0167, weight)	(0.0193, fitness)
Word8	(0.0159, woman)	(0.0143, great)
Word9	(0.0131, death)	(0.0132, morning)

Figure 7.53: The word-topic table with probabilities

Lesson 8: Market Basket Analysis

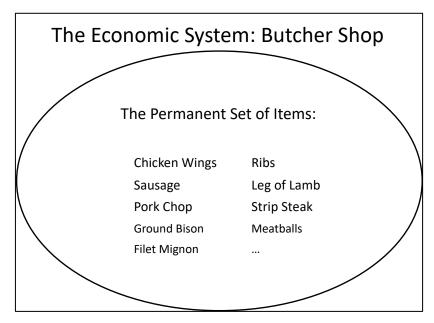


Figure 8.1: An example market basket where the economic system is the butcher shop and the permanent set of items is all the meat products offered by the butcher

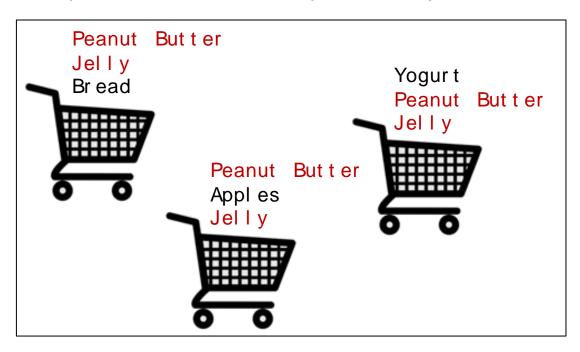


Figure 8.2: A visualization of market basket analysis

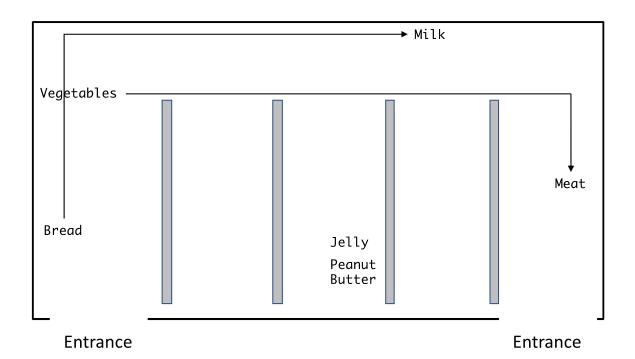


Figure 8.3: How product associations can help inform efficient and lucrative store layouts

$$Support(X \Rightarrow Y) = Support(X, Y) = P(X, Y) = \frac{Frequency(X, Y)}{N}$$

Figure 8.4: Formula for support

Figure 8.5: Formula for confidence

$$Lift(X \Rightarrow Y) = \frac{Support(X,Y)}{Support(X) * Support(Y)} = \frac{P(X,Y)}{P(X) * P(Y)}$$

Figure 8.6: Formula for lift

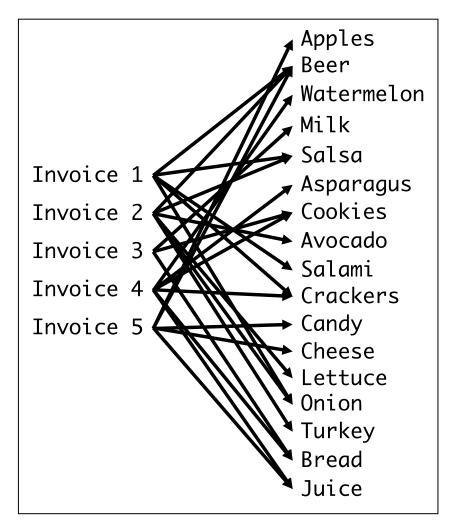
$$Leverage(X \Rightarrow Y) = Support(X, Y) - (Support(X) * Support(Y)) = P(X, Y) - (P(X) * P(Y))$$

Figure 8.7: Formula for leverage

$$Conviction(X \Rightarrow Y) = \frac{1 - Support(Y)}{1 - Confidence(X \Rightarrow Y)}$$

Figure 8.8: Formula for conviction

```
N = 10
Freq(x) = 7
Freq(y) = 5
Freq(x, y) = 4
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTLE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
5	536365	22752	SET 7 BABUSHKA NESTING BOXES	2	2010-12-01 08:26:00	7.65	17850.0	United Kingdom
6	536365	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6	2010-12-01 08:26:00	4.25	17850.0	United Kingdom
7	536366	22633	HAND WARMER UNION JACK	6	2010-12-01 08:28:00	1.85	17850.0	United Kingdom
8	536366	22632	HAND WARMER RED POLKA DOT	6	2010-12-01 08:28:00	1.85	17850.0	United Kingdom
9	536367	84879	ASSORTED COLOUR BIRD ORNAMENT	32	2010-12-01 08:34:00	1.69	13047.0	United Kingdom

Figure 8.11: The raw online retail data

InvoiceNo	object
StockCode	object
Description	object
Quantity	int64
InvoiceDate	datetime64[ns]
UnitPrice	float64
CustomerID	float64
Country	object
dtype: object	

Figure 8.12: Data type for each column in the dataset

Description	nvoiceNo	1
WHITE HANGING HEART T-LIGHT HOLDER	536365	0
WHITE METAL LANTERN	536365	1
CREAM CUPID HEARTS COAT HANGER	536365	2
KNITTED UNION FLAG HOT WATER BOTTLE	536365	3
RED WOOLLY HOTTIE WHITE HEART.	536365	4
SET 7 BABUSHKA NESTING BOXES	536365	5
GLASS STAR FROSTED T-LIGHT HOLDER	536365	6
HAND WARMER UNION JACK	536366	7
HAND WARMER RED POLKA DOT	536366	8
ASSORTED COLOUR BIRD ORNAMENT	536367	9

Figure 8.13: The cleaned online retail dataset

	InvoiceNo	Description
	Invoicento	Description
229435	557056	SET OF 4 KNICK KNACK TINS DOILEY
229436	557057	RED POLKADOT BEAKER
229437	557057	BLUE POLKADOT BEAKER
229438	557057	DAIRY MAID TOASTRACK
229439	557057	BLUE EGG SPOON
229440	557057	RED EGG SPOON
229441	557057	MODERN FLORAL STATIONERY SET
229442	557057	FLORAL FOLK STATIONERY SET
229443	557057	CERAMIC BOWL WITH LOVE HEART DESIGN
229444	557057	WOOD STAMP SET THANK YOU

Figure 8.14: The cleaned dataset with only 5,000 unique invoice numbers

[["RED POLKADOT BEAKER ', 'BLUE POLKADOT BEAKER ', 'DAIRY MAID TOASTRACK', 'BLUE EGG SPOON', 'RED EGG SPOON', 'MODERN FLORAL STATIONERY SET', 'FLORAL FOLK STATIONERY SET', 'CERAMIC BOML WITH LOVE HEART DESIGN', 'WODD STAMP SET THANK YOU', 'WOOD STAMP SET HAPPY BIRTHDAY', 'PENS ASSORTED SPACEBALL', 'PENS ASSORTED FUNKY JAEKLED ', 'SCITIE DOGS BABY B IB', 'CHARLIE AND LOLA TABLE TINS', 'CHARLIE & LOLA WASTEPAPER BIN FLORA', 'CHARLIE & LOLA WASTEPAPER BIN BULE', 'CHARLIE AND LOLA FIGURES TINS', 'IT DINNER TRAY DOLY GIRL', 'SETY20 RED RETROSPOT PAPER NAPKINS ', 'MINT KITCHEN SCALES', 'RED KITCHEN SCAL Es', '36 FOIL HEART CAKE CASES', '36 FOIL STAR CAKE CASES ', 'ILLUSTRATED CAT BOWL ', 'POTTING SHED TEA MUG', 'CERAMIC STRAWBER RY DESIGN MUG', 'RED RETROSPOT SHOPPER BAG', 'BUITON BOX ', 'MINI CAKE STAND HANGING STRAWBERY', 'LUNCH BAG DOILEY PATTERN ', 'JUMBO BAG STRAWBERRY', 'STRAWBERRY SHOPPER BAG', 'BUIRD BOX ', 'JUMBO BAG SLPHABET', 'SKULL SHOULDER BAG', 'LUNCH BAG BLACK SKULL.', 'TRADITIONAL WOODEN CATCH CUP GAME ', '10 COLOUR SPACEBOY PEN', 'JUMBO BAG SLPHAPENE ', 'LUNCH BAG BSACEBOY DESIGN ', 'CHLIDREN'S APRON DOLUY GIRL ', 'LUNCH BAG DOLLY GIRL DESIGN', 'TEATIME ROUND PENCIL SHAPPENER ', 'SLIVER HEARTS TABL E OECORATION', 'PARISIENNE KEY CABINET ', 'PARISIENNE JEWELLERY DRAWER ', 'BUNDLE OF 3 SCHOOL EXERCISE BOOKS ', 'JUMBO BAG DAD LEY ATTERNS', 'DOLLY GIRL CHLIDRENS ADD', 'GADENERS KNEELING PAD KEEP CALM ', 'CARTON PENCIL SOWL', 'SPACE BOY CHLIDRENS CUP', 'GARDENERS KNEELING PAD CUP OF TEA ', 'GARDENERS KNEELING PAD KEEP CALM ', 'CARTON PENCIL NARPENERS', 'POPART NECT PENCIL SHARPENER SAST', 'FIECE OF CAMO STAITIONERY SCI', 'POPART MADOLEY AND KEL POLKADOTS ', 'TRAVEL CARD WALLET TA ANSPORT', 'TRAVEL CARD WALLET FLOWER MEADOW', 'TRAVEL CARD WALLET VINTAGE PAISLEY', 'JUMBO BAG BA NOQUE BLACK WHITE', 'RIBBON REEL STRIPES DESIGN ', 'RIBBON REEL LACE DESIGN ', 'RIBBON REEL POLKADOTS ', 'TRAVEL CARD WALLET VINTAGE TOCKE', 'JUNTAGE ANTER', 'TRAVEL CARD WALLET FLOWER MEADOW', 'TRAVEL CARD WALLET VINTAGE LEAF',

Figure 8.15: Four elements of the list of lists, where each sub-list contains all the items belonging to an individual invoice

[[False False False False False False]
[False False False False ... False False False]
[False False False ... False False False]
[False False False ... False False False]
[False False False ... False False False]]

Figure 8.16: The multi-dimensional array containing the Boolean variables indicating product presence in each transaction

	4 PURPLE FLOCK DINNER CANDLES	50'S CHRISTMAS GIFT BAG LARGE	DOLLY GIRL BEAKER	I LOVE LONDON MINI BACKPACK	NINE DRAWER OFFICE TIDY	OVAL WALL MIRROR DIAMANTE	RED SPOT GIFT BAG LARGE	SET 2 TEA TOWELS I LOVE LONDON
4970	False	False	False	False	False	False	False	False
4971	False	False	True	False	False	False	False	False
4972	False	False	False	False	False	False	False	False
4973	False	False	False	False	False	False	False	False
4974	False	False	False	False	False	False	False	False
4975	False	False	False	False	False	False	False	False
4976	False	False	False	False	False	False	False	False
4977	False	False	False	False	False	False	False	False
4978	False	False	False	False	False	False	False	False
4979	False	False	False	False	False	False	False	False

Figure 8.17: A small section of the encoded data recast as a DataFrame

Figure 8.18: A subset of the cleaned, encoded, and recast DataFrame built from the complete online retail dataset

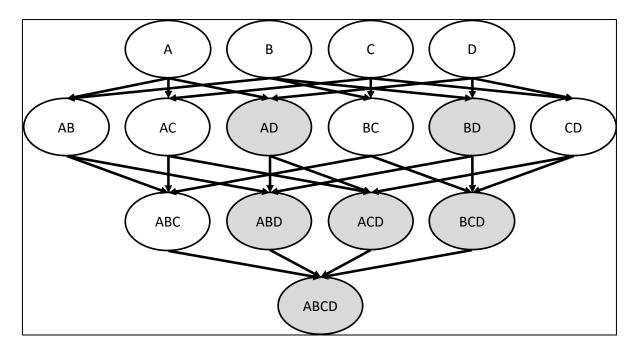


Figure 8.19: A mapping of how item sets are built and how the Apriori principle can greatly decrease the computational requirements (all the grayed-out nodes are infrequent)

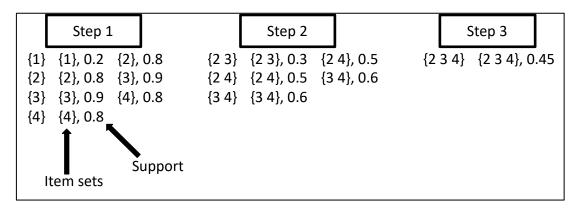


Figure 8.20: Assuming a minimum support threshold of 0.4, the diagram shows the general Apriori algorithm structure

	support	itemsets
0	0.0168	(2)
1	0.0150	(10)
2	0.0116	(15)
3	0.0144	(18)
4	0.0210	(19)
5	0.0144	(20)
6	0.0138	(21)

Figure 8.21: Basic output of the Apriori algorithm run using mlxtend

	support	itemsets
0	0.0168	(DOLLY GIRL BEAKER)
1	0.0150	(10 COLOUR SPACEBOY PEN)
2	0.0116	(12 MESSAGE CARDS WITH ENVELOPES)
3	0.0144	(12 PENCILS SMALL TUBE SKULL)
4	0.0210	(12 PENCILS TALL TUBE POSY)
5	0.0144	(12 PENCILS TALL TUBE RED RETROSPOT)
6	0.0138	(12 PENCILS TALL TUBE SKULLS)

Figure 8.22: The output of the Apriori algorithm with the actual item names instead of numerical designations

	support	itemsets	length
0	0.0168	(DOLLY GIRL BEAKER)	1
1	0.0150	(10 COLOUR SPACEBOY PEN)	1
2	0.0116	(12 MESSAGE CARDS WITH ENVELOPES)	1
3	0.0144	(12 PENCILS SMALL TUBE SKULL)	1
4	0.0210	(12 PENCILS TALL TUBE POSY)	1
5	0.0144	(12 PENCILS TALL TUBE RED RETROSPOT)	1
6	0.0138	(12 PENCILS TALL TUBE SKULLS)	1

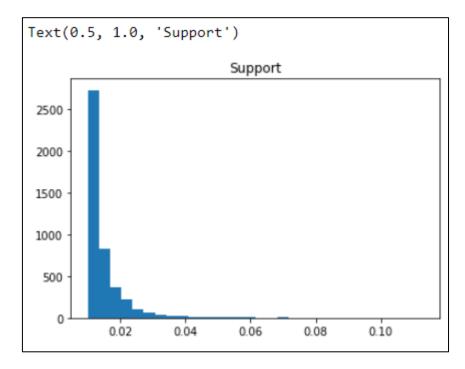
Figure 8.23: The Apriori algorithm output plus an additional column containing the lengths of the item sets

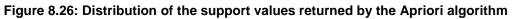
	support	itemsets	length
•	0.015	(10 COLOUR SPACEBOY PEN)	1

Figure 8.24: The output DataFrame filtered down to a single item set

	support	itemsets	length
837	0.0202	(ALARM CLOCK BAKELIKE IVORY, ALARM CLOCK BAKEL	2
956	0.0202	(LUNCH BAG APPLE DESIGN, CHARLOTTE BAG APPLES	2
994	0.0200	(LUNCH BAG PINK POLKADOT, CHARLOTTE BAG PINK P	2
1026	0.0206	(CHARLOTTE BAG SUKI DESIGN, LUNCH BAG BLACK S	2
1032	0.0206	(CHARLOTTE BAG SUKI DESIGN, LUNCH BAG RED RETR	2
1131	0.0200	(JUMBO SHOPPER VINTAGE RED PAISLEY, DOTCOM POS	2
1298	0.0208	(HEART OF WICKER LARGE, HEART OF WICKER SMALL)	2
1305	0.0200	(HEART OF WICKER SMALL, SMALL WHITE HEART OF W	2
1316	0.0204	(JAM MAKING SET PRINTED, JAM MAKING SET WITH J	2
1349	0.0208	(SET OF 3 REGENCY CAKE TINS, JAM MAKING SET PR	2
1440	0.0200	(JUMBO BAG ALPHABET, LUNCH BAG ALPHABET DESIGN)	2
1464	0.0206	(JUMBO BAG APPLES, JUMBO BAG DOILEY PATTERNS)	2
1471	0.0202	(JUMBO BAG SCANDINAVIAN BLUE PAISLEY, JUMBO BA	2
1472	0.0202	(JUMBO BAG SPACEBOY DESIGN, JUMBO BAG APPLES)	2
1479	0.0204	(JUMBO BAG APPLES, JUMBO STORAGE BAG SKULLS)	2
1575	0.0200	(JUMBO BAG PINK POLKADOT, JUMBO BAG OWLS)	2
1583	0.0208	(JUMBO BAG WOODLAND ANIMALS, JUMBO BAG OWLS)	2

Figure 8.25: The Apriori algorithm output DataFrame filtered by length and support





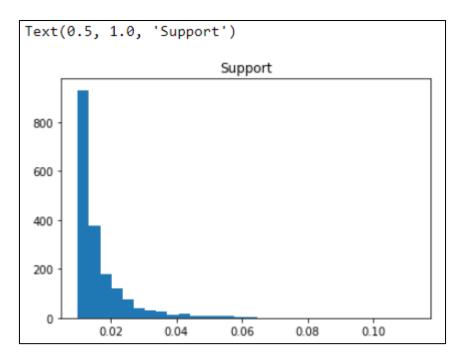


Figure 8.27: Distribution of support values

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(DOLLY GIRL BEAKER)	(SPACEBOY BEAKER)	0.0168	0.0172	0.0126	0.750000	43.604651	0.012311	3.931200
1	(SPACEBOY BEAKER)	(DOLLY GIRL BEAKER)	0.0172	0.0168	0.0126	0.732558	43.604651	0.012311	3.676313
2	(ALARM CLOCK BAKELIKE CHOCOLATE)	(ALARM CLOCK BAKELIKE GREEN)	0.0208	0.0580	0.0160	0.769231	13.262599	0.014794	4.082000
3	(ALARM CLOCK BAKELIKE CHOCOLATE)	(ALARM CLOCK BAKELIKE RED)	0.0208	0.0498	0.0142	0.682692	13.708681	0.013164	2.994570
4	(ALARM CLOCK BAKELIKE IVORY)	(ALARM CLOCK BAKELIKE GREEN)	0.0302	0.0580	0.0202	0.668874	11.532313	0.018448	2.844840
5	(ALARM CLOCK BAKELIKE ORANGE)	(ALARM CLOCK BAKELIKE GREEN)	0.0282	0.0580	0.0212	0.751773	12.961604	0.019564	3.794914
6	(ALARM CLOCK BAKELIKE PINK)	(ALARM CLOCK BAKELIKE GREEN)	0.0380	0.0580	0.0254	0.668421	11.524501	0.023196	2.840952

Figure 8.28: The first 7 rows of the association rules generated using only 5,000 transactions

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(POPPY'S PLAYHOUSE KITCHEN, POPPY'S PLAYHOUSE	(POPPY'S PLAYHOUSE LIVINGROOM)	0.0136	0.0148	0.0102	0.750000	50.675676	0.009999	3.940800
1	(POPPY'S PLAYHOUSE LIVINGROOM)	(POPPY'S PLAYHOUSE KITCHEN, POPPY'S PLAYHOUSE	0.0148	0.0136	0.0102	0.689189	50.675676	0.009999	3.173635
2	(DOLLY GIRL CHILDRENS BOWL, SPACEBOY CHILDRENS	(DOLLY GIRL CHILDRENS CUP, SPACEBOY CHILDRENS	0.0136	0.0140	0.0120	0.882353	63.025210	0.011810	8.381000
3	(DOLLY GIRL CHILDRENS CUP, SPACEBOY CHILDRENS	(DOLLY GIRL CHILDRENS BOWL, SPACEBOY CHILDRENS	0.0140	0.0136	0.0120	0.857143	63.025210	0.011810	6.904800
4	(REGENCY TEA PLATE ROSES , GREEN REGENCY TEACU	(REGENCY TEA PLATE GREEN , PINK REGENCY TEACUP	0.0160	0.0138	0.0112	0.700000	50.724638	0.010979	3.287333
5	(REGENCY TEA PLATE GREEN , PINK REGENCY TEACUP	(REGENCY TEA PLATE ROSES , GREEN REGENCY TEACU	0.0138	0.0160	0.0112	0.811594	50.724638	0.010979	5.222769
6	(REGENCY TEA PLATE PINK, GREEN REGENCY TEACUP	(ROSES REGENCY TEACUP AND SAUCER , REGENCY TEA	0.0124	0.0166	0.0106	0.854839	51.496308	0.010394	6.774533

Figure 8.29: The first 7 rows of the association rules

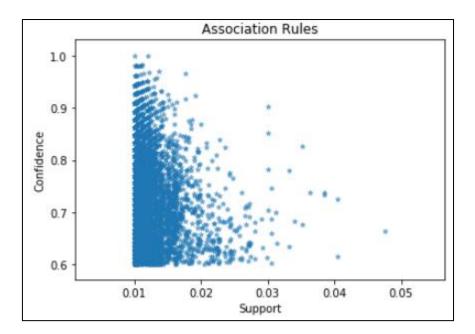


Figure 8.30: A plot of confidence against support

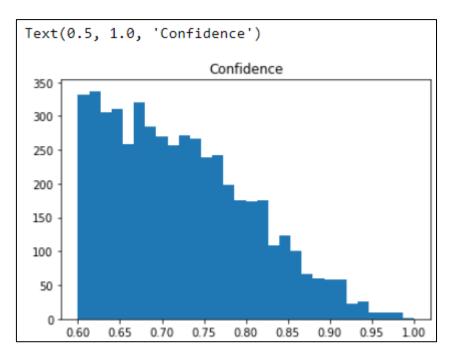


Figure 8.31: The distribution of confidence values

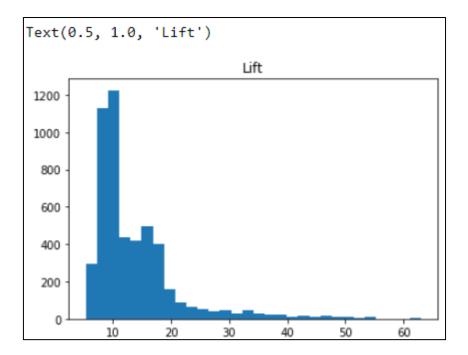


Figure 8.32: The distribution of lift values

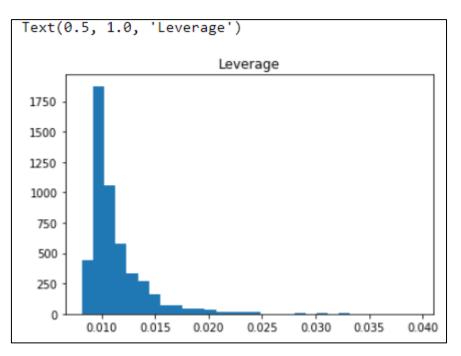


Figure 8.33: The distribution of leverage values

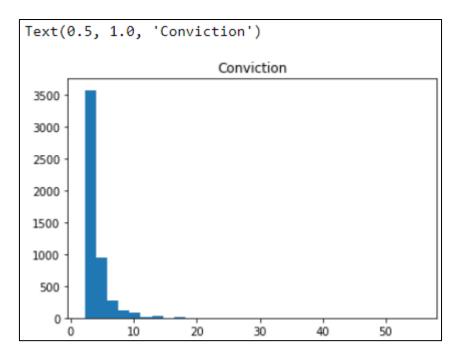
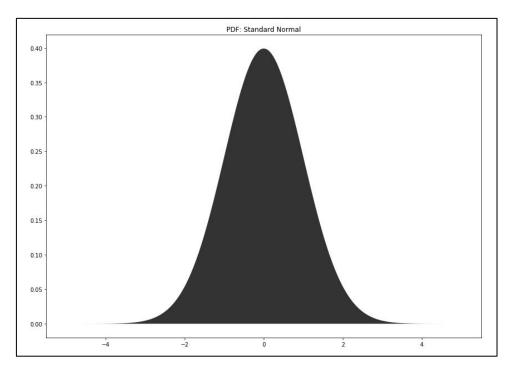


Figure 8.34: The distribution of conviction values

Lesson 9: Hotspot Analysis

Figure 9.1: A fabricated example of fire location data showing some potential hotspots



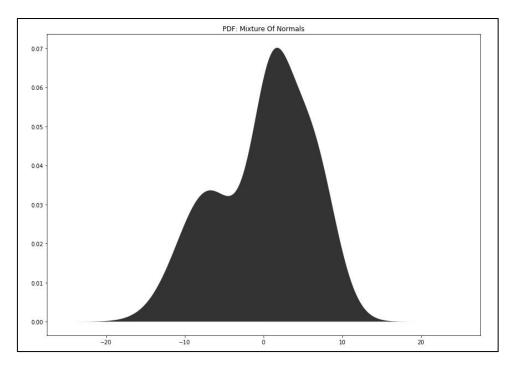


Figure 9.3: A mixture of three normal distributions

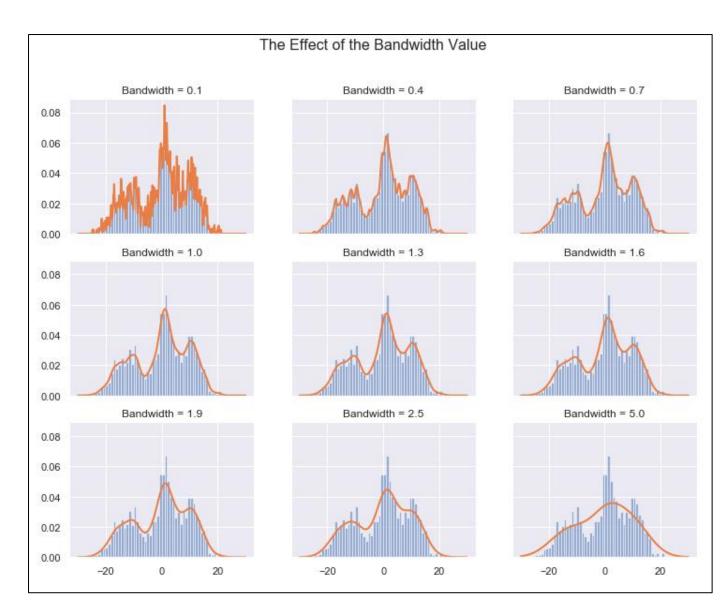


Figure 9.4: A 3 x 3 matrix of subplots; each of which features an estimated density created using one of nine bandwidth values

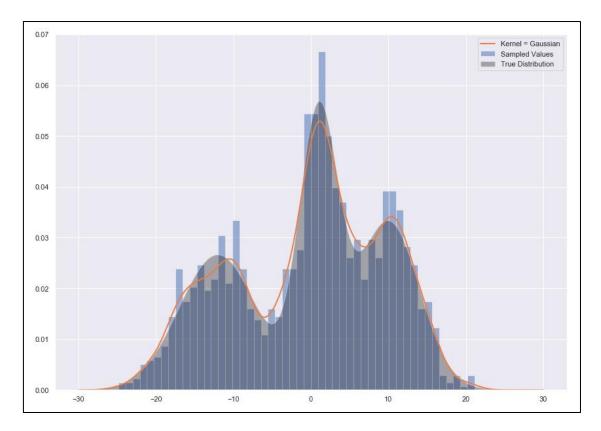


Figure 9.5: A histogram of the random sample with the true density and the optimal estimated density overlaid

 $K(x;h) \propto exp$

Figure 9.6: The formula for the Gaussian kernel

if if $|x| \ge h$ |x| < h $K(x;h) \propto$

Figure 9.7: The formula for the Tophat kernel

$$K(x;h) \propto 1 - \frac{x^2}{h^2}$$

Figure 9.8: The formula for the Epanechnikov kernel

 $K(x;h) \propto exp$ h

Figure 9.9: The formula for the Exponential kernel

 $1 - \frac{x}{x} \quad if \quad |x| \ge h$ $K(x;h) \propto$

Figure 9.10: The formula for the Linear kernel

 $0 if |x| \ge h$ $\cos \frac{\pi x}{2h} if |x| < h$ $K(x;h) \propto$

Figure 9.11: The formula for the Cosine kernel

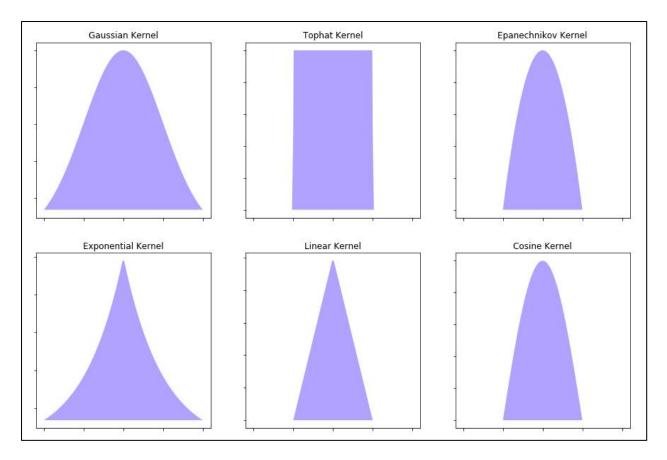


Figure 9.12: The general shapes of the six kernel functions

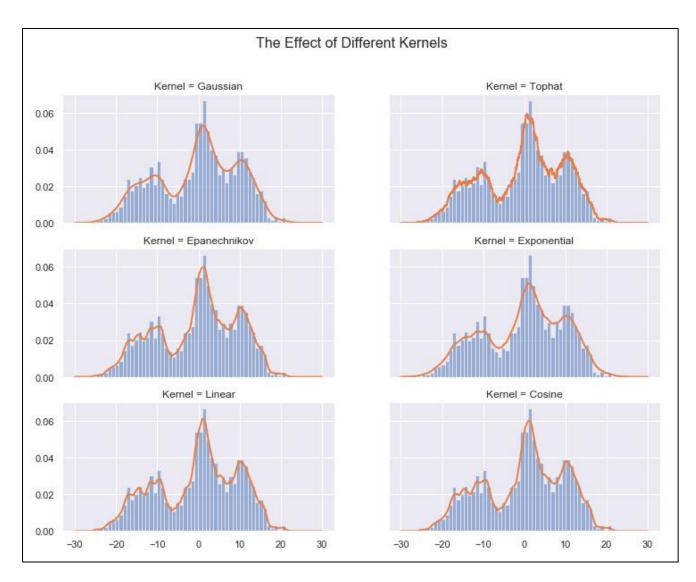


Figure 9.13: A 3 x 2 matrix of subplots, each of which features an estimated density created using one of six kernel functions

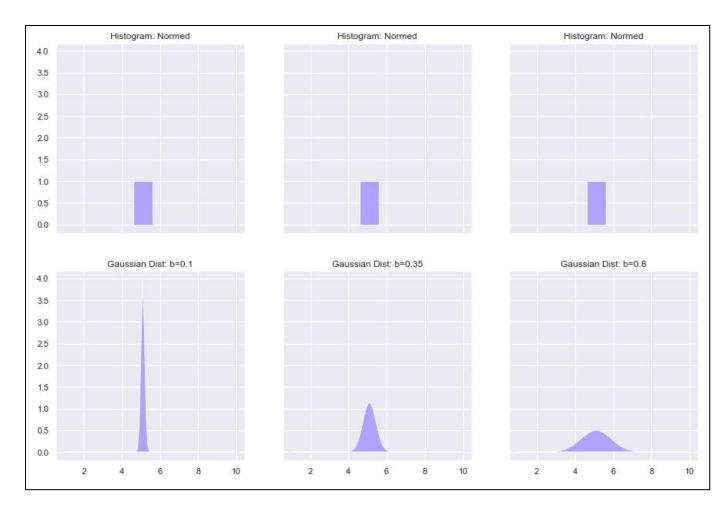
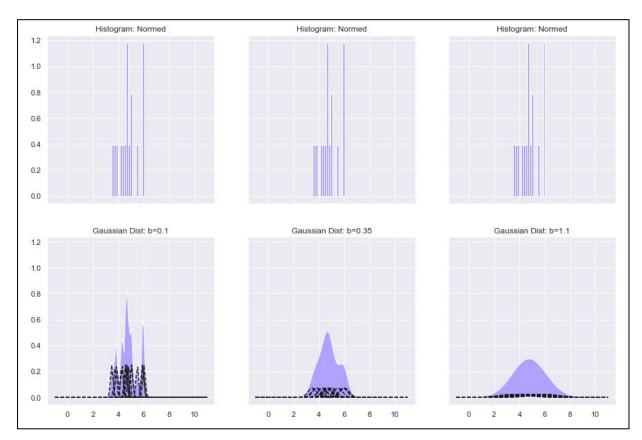
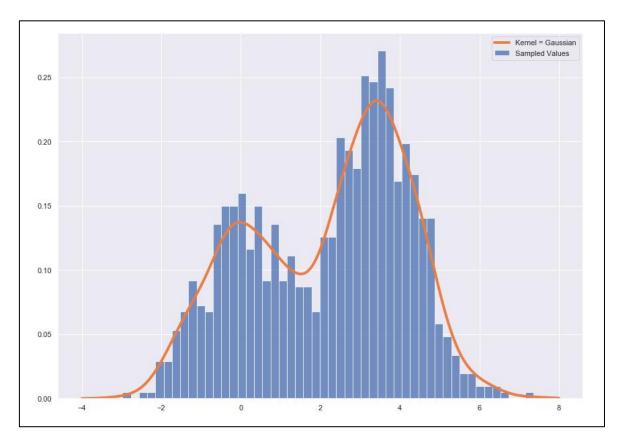


Figure 9.14: Showing one data point and its individual density at various bandwidth values





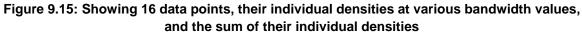


Figure 9.16: A histogram of the random sample with the optimal estimated density overlaid

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	<mark>37.8</mark> 5	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25

Figure 9.17: The first five rows of the California housing dataset from sklearn

Latitude	Longitude
37.82	-122.29
37.81	-122.27
<mark>37.8</mark> 0	-122.27
37.90	-122.30
37.87	-122.30
	37.82 37.81 37.80 37.90

Figure 9.18: The first five rows of the dataset filtered down to those rows that have a value of 15 or less in the HouseAge column

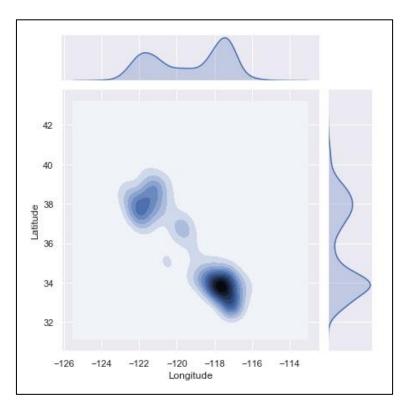


Figure 9.19: A joint plot containing both the two-dimensional estimated density plus the marginal densities for the dfLess15 dataset

	Latitude	Longitude
0	37.88	-122.23
2	37.85	- <mark>122.24</mark>
3	37.85	-122.25
4	37.85	-122.25
5	37.85	-122.25

Figure 9.20: The top of the dataset filtered to the rows containing values greater than 40 in the HouseAge column

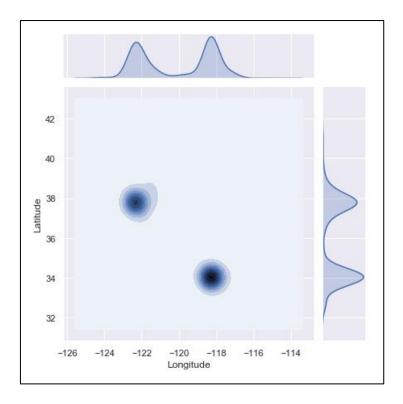


Figure 9.21: A joint plot containing both the two-dimensional estimated density plus the marginal densities for the dfMore40 dataset

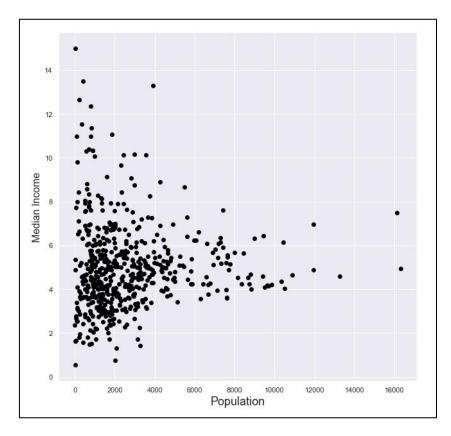


Figure 9.22: A scatterplot of the median income against population for values of five or less in the HouseAge column

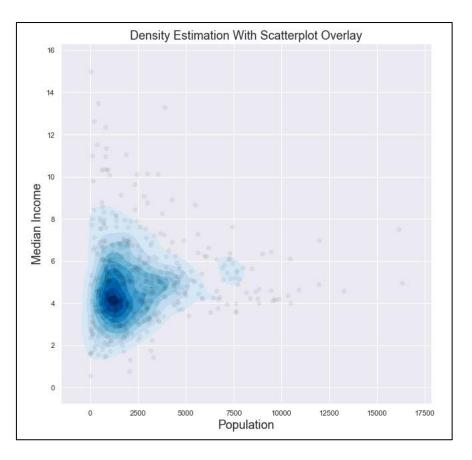


Figure 9.23: The same scatterplot as created in Step 6 with the estimated density overlaid

```
X Grid Component:
[[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]
[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]
[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]
...
[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]
[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]
[-124.23 -124.19 -124.17 ... -114.63 -114.57 -114.31]]
Y Grid Component:
[[32.54 32.54 32.54 ... 32.54 32.54 32.54]
[32.55 32.55 32.55 ... 32.55 32.55 32.55]
[32.55 32.55 32.55 ... 32.55 32.55 32.55]
...
[41.74 41.74 41.74 ... 41.74 41.74 41.74]
[41.75 41.75 41.75 ... 41.75 41.75 41.75]
[41.78 41.78 41.78 ... 41.78 41.78 41.78]]
```

Figure 9.24: The x and y components of the grid representing the dfLess15 dataset

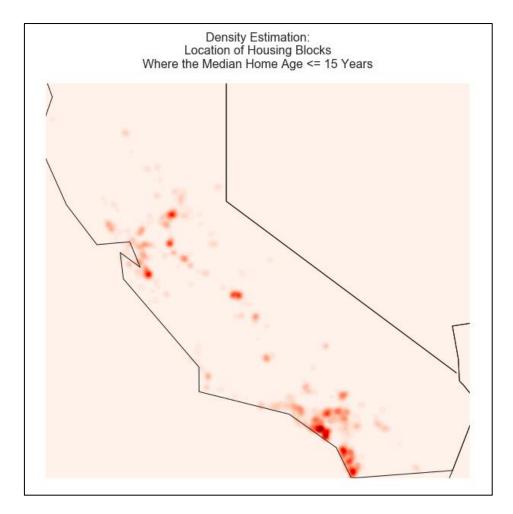


Figure 9.25: The estimated density of dfLess15 overlaid onto an outline of California

X Grid Component: [[-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] ... [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59] [-124.35 -124.26 -124.23 ... -114.61 -114.6 -114.59]] Y Grid Component: [[32.64 32.64 32.64 ... 32.64 32.64 32.64] [32.66 32.66 32.66 ... 32.66 32.66 32.66] [32.66 32.66 32.66 ... 32.66 32.66 32.66] ... [41.43 41.43 41.43 ... 41.43 41.43 41.43 [41.73 41.73 41.73 ... 41.73 41.73 41.73] [41.78 41.78 41.78 ... 41.78 41.78 41.78]]

Figure 9.26: The x and y components of the grid representing the dfMore40 dataset

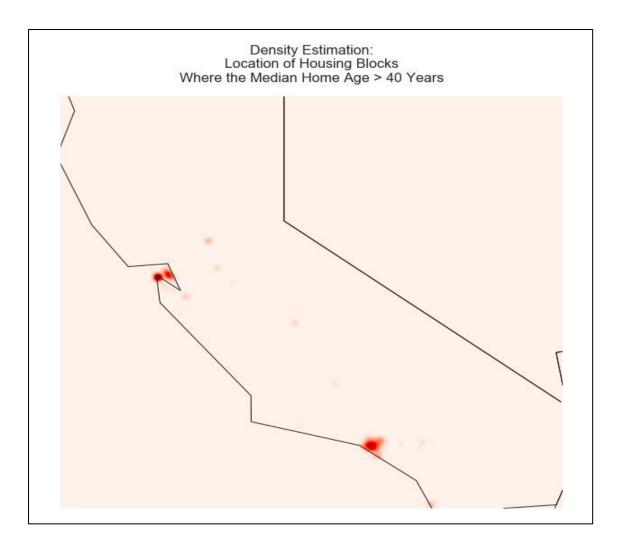
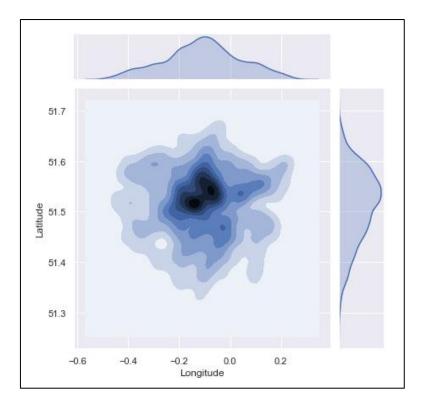
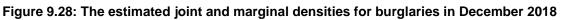


Figure 9.27: The estimated density of dfMore40 overlaid onto an outline of California





Solutions

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Figure 1.22: First five rows of the data

[2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	1	0	0	0	0
0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0
0	1]																																		

Figure 1.23: List of predicted species

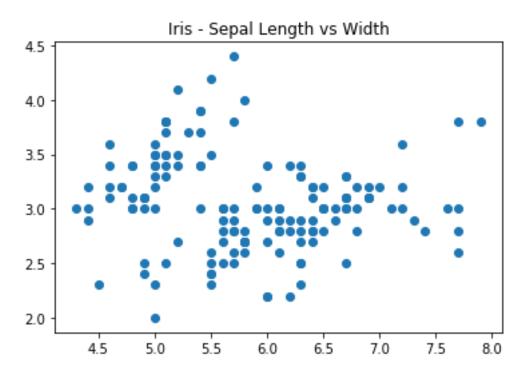


Figure 1.24: Plot of performed k-means implementation

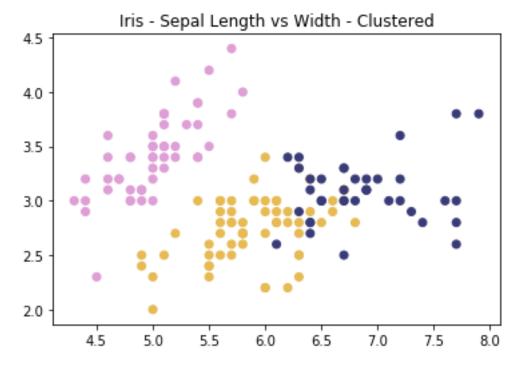


Figure 1.25: Clusters of Iris species

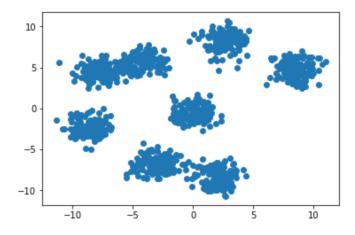
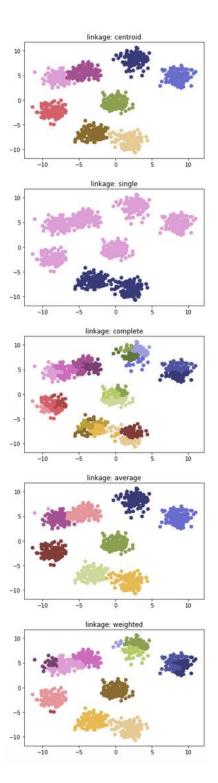
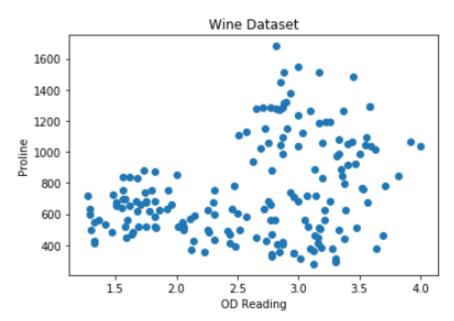


Figure 2.20: A scatter plot of the generated cluster dataset



<bound< th=""><th>method</th><th>NDFrame.head of</th><th>OD_read</th><th>Proline</th></bound<>	method	NDFrame.head of	OD_read	Proline
0	3.92	1065.0		
1	3.40	1050.0		
2	3.17	1185.0		
3	3.45	1480.0		
4	2.93	735.0		
5	2.85	1450.0		



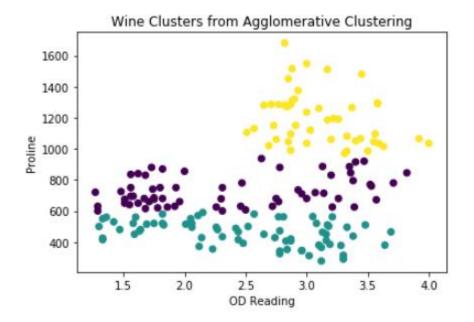
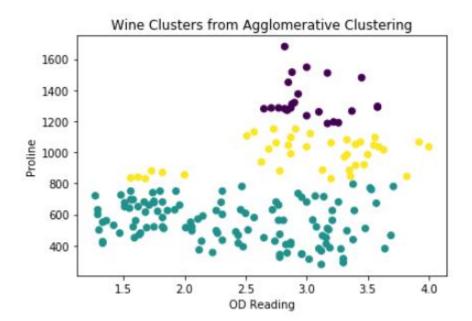
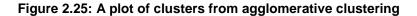


Figure 2.24: A plot of clusters from k-means clustering





Silhouette Scores for Wine Dataset:

K-Means Clustering: 0.5809421087616886 Agg Clustering: 0.5988495817462

Figure 2.26: Silhouette scores for the wine dataset

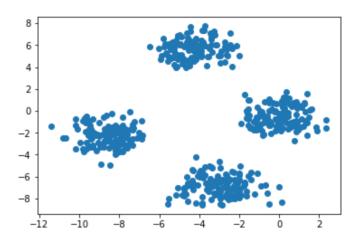


Figure 3.14: Plot of generated data

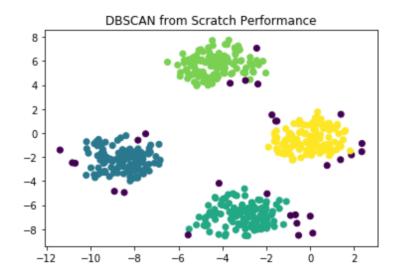


Figure 3.15: Plot of DBSCAN implementation

	OD_read	Proline
0	3.92	1065.0
1	3.40	1050.0
2	3.17	1185.0
3	3.45	1480.0
4	2.93	735.0

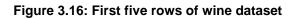


Figure 3.17: Plot of the data

```
Eps: 20 Min Samples: 5
DBSCAN Clustering:
                   0.3997987919957757
Eps:
     25 Min Samples: 5
DBSCAN Clustering:
                   0.35258611037074095
Eps: 30 Min Samples: 5
DBSCAN Clustering:
                   0.43763797761597306
Eps:
    25 Min Samples:
                     7
DBSCAN Clustering:
                   0.2711660466706248
Eps:
    35 Min Samples:
                      7
DBSCAN Clustering:
                   0.4600630149335495
Eps:
    35 Min Samples:
                      3
DBSCAN Clustering:
                   0.5368842164535846
```

Figure 3.18: Printing the silhouette score for clusters

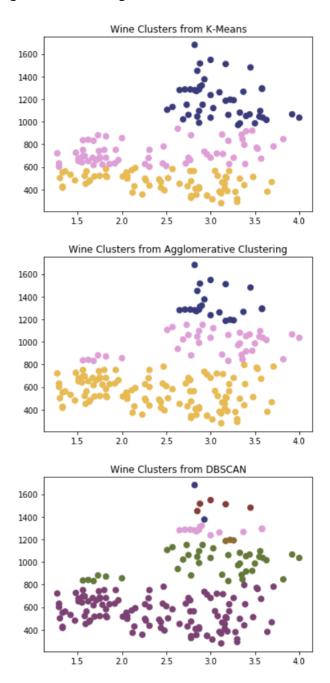


Figure 3.19: Plot of clusters using different algorithms

Silhouette Scores for Wine Dataset:

K-Means Clustering: 0.5809421087616886 Agg Clustering: 0.5988495817462 DBSCAN Clustering: 0.5368842164535846

Figure 3.20: Silhouette score

Sonal Longth Sonal Width

	Separ Lengui	Separ width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

Figure 4.43: The first five rows of the data

array([[0.68569351,	-0.03926846],
[-	-0.03926846,	0.18800403]])

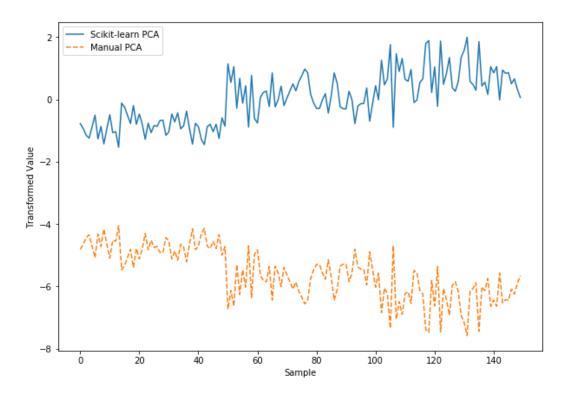


Figure 4.45: A plot of the data

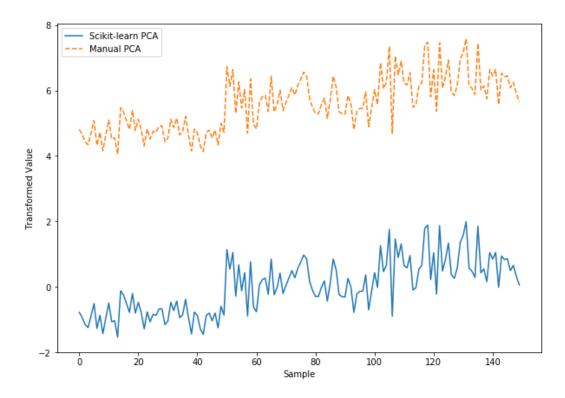
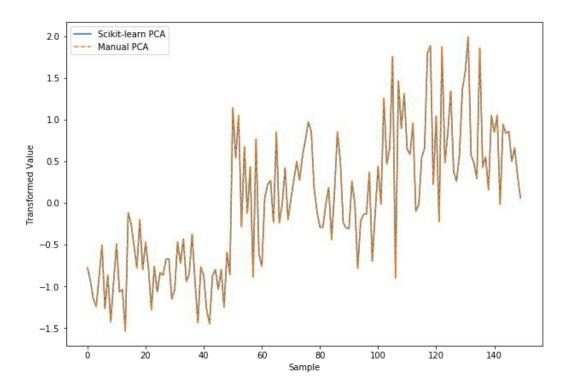
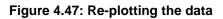


Figure 4.46: Re-plotted data





	Sepal Length	Sepal Width	Petal Width
0	5.1	3.5	0.2
1	4.9	3.0	0.2
2	4.7	3.2	0.2
3	4.6	3.1	0.2
4	5.0	3.6	0.2

Figure 4.48: Sepal Length, Sepal Width, and Petal Width

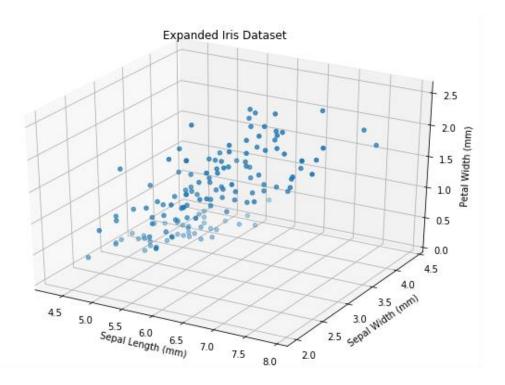


Figure 4.49: Expanded Iris dataset plot

```
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
    svd_solver='auto', tol=0.0, whiten=False)
```

Figure 4.50: The model fitted to the dataset

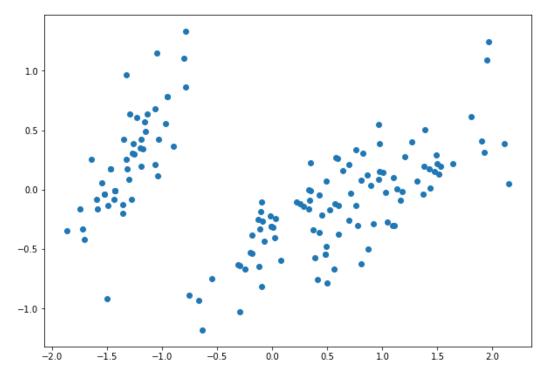
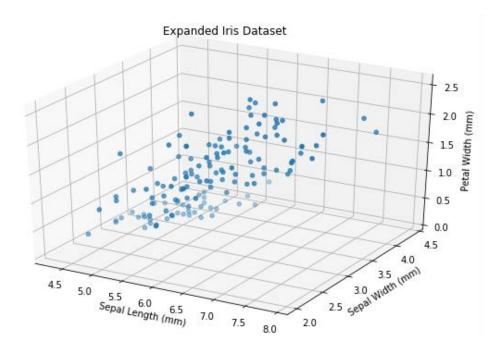


Figure 4.51: Plot of the transformed data



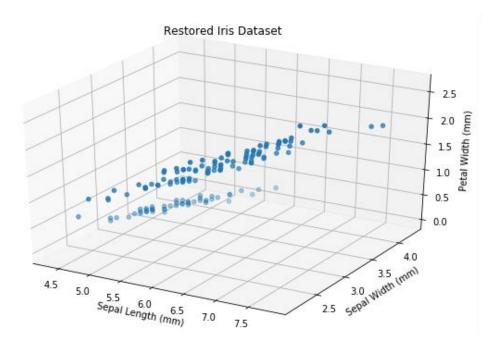


Figure 4.52: Plot of the expanded and the restored Iris datasets

array([-5. ,	-4.8989899 ,	-4.7979798 ,	-4.6969697 ,	-4.5959596 ,
-4.49494949,	-4.39393939,	-4.29292929,	-4.19191919,	-4.09090909,
-3.98989899,	-3.88888889,	-3.78787879,	-3.68686869,	-3.58585859,
-3.48484848,	-3.38383838,	-3.28282828,	-3.18181818,	-3.08080808,
-2.97979798,	-2.87878788,	-2.7777778,	-2.67676768,	-2.57575758,
-2.47474747,	-2.37373737,	-2.27272727,	-2.17171717,	-2.07070707,
-1.96969697,	-1.86868687,	-1.76767677,	-1.66666667,	-1.56565657,
	1.00000000	1.00000000		1 00000000

Figure 5.35: Printing the inputs

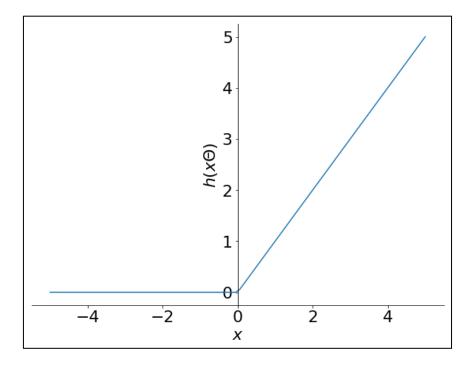


Figure 5.36: Plot of the neuron versus input

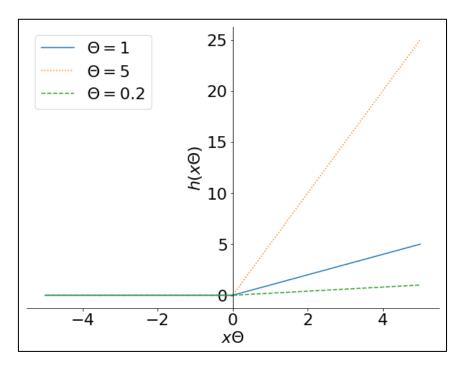


Figure 5.37: Three output curves of the neuron

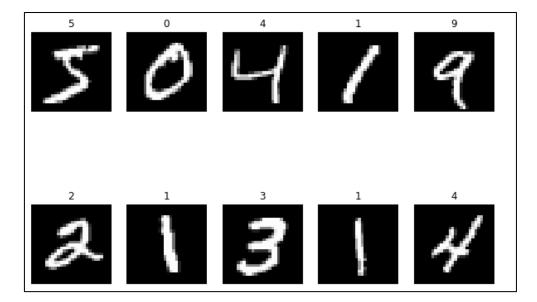


Figure 5.38: First 10 samples

	0.,	0.,	····, ···,	Θ.,	0.,	0.],
[O.,	Θ.,	0.,	· · · · , · · · · , · · · ,	Θ.,	0.,	

Figure 5.39: Result of one hot encoding

10000/10000 [=====]]	- 2s 152us/step - loss: 0.1963 - acc: 0.9471
Epoch 13/20	
10000/10000 [======]	- 2s 157us/step - loss: 0.1921 - acc: 0.9479
Epoch 14/20	
10000/10000 [======]	- 2s 173us/step - loss: 0.1877 - acc: 0.9487
Epoch 15/20	
10000/10000 [======]	- 2s 157us/step - loss: 0.1836 - acc: 0.9507
Epoch 16/20	
10000/10000 [======]	- 2s 156us/step - loss: 0.1791 - acc: 0.9522
Epoch 17/20	
	- 2s 157us/step - loss: 0.1754 - acc: 0.9532
Epoch 18/20	
	- 2s 158us/step - loss: 0.1714 - acc: 0.9538
Epoch 19/20	
	- 2s 156us/step - loss: 0.1681 - acc: 0.9544
Epoch 20/20	
10000/10000 [=====]	- 2s 160us/step - loss: 0.1638 - acc: 0.9559
<keras.callbacks.history 0x7f60f7011f60="" at=""></keras.callbacks.history>	

Figure 5.40: Training the model

Epoch 96/100		-
10000/10000 [=====] -	1s	130us/step - loss: 0.0755
Epoch 97/100		
10000/10000 [=====] -	1s	127us/step - loss: 0.0754
Epoch 98/100		
10000/10000 [=====] -	1s	126us/step - loss: 0.0754
Epoch 99/100		
10000/10000 [=====] -	1s	125us/step - loss: 0.0753
Epoch 100/100		-
10000/10000 [=====] -	1s	128us/step - loss: 0.0752
		•

<keras.callbacks.History at 0x7f5e9d2f0860>

Figure 5.41: Training the model

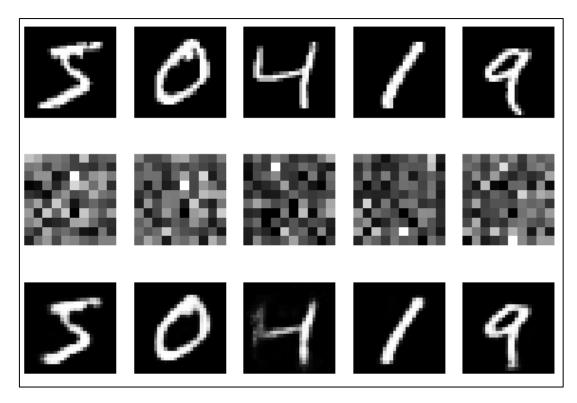


Figure 5.42: The original image, the encoder output, and the decoder

Layer (type)	Output	Shape		Param #
input_1 (InputLayer)	(None,	28, 28,	1)	Θ
conv2d_1 (Conv2D)	(None,	28, 28,	16)	160
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	14, 14,	16)	0
conv2d_2 (Conv2D)	(None,	14, 14,	16)	2320
up_sampling2d_1 (UpSampling2	(None,	28, 28,	16)	0
conv2d_3 (Conv2D)	(None,	28, 28,	1)	145
Total params: 2,625 Trainable params: 2,625 Non-trainable params: 0				

Figure 5.43: Structure of model

Epoch 15/20	
10000/10000	[=====] - 9s 894us/step - loss: 0.0641
Epoch 16/20	
10000/10000	[=====] - 9s 931us/step - loss: 0.0640
Epoch 17/20	
10000/10000	[=====] - 9s 890us/step - loss: 0.0639
Epoch 18/20	
10000/10000	[=====] - 9s 943us/step - loss: 0.0638
Epoch 19/20	
10000/10000	[=====] - 9s 914us/step - loss: 0.0636
Epoch 20/20	
10000/10000	[=====] - 9s 931us/step - loss: 0.0635
-	

Figure 5.44: Training the model

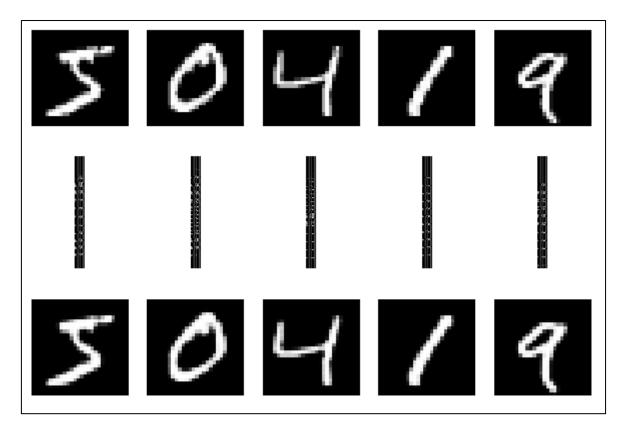


Figure 5.45: The original image, the encoder output, and the decoder

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Figure 6.24: The first five rows of the wine dataset.

```
TSNE(angle=0.5, early_exaggeration=12.0, init='random', learning_rate=200.0,
    method='barnes_hut', metric='euclidean', min_grad_norm=1e-07,
    n_components=2, n_iter=1000, n_iter_without_progress=300,
    perplexity=30.0, random_state=0, verbose=1)
```

Figure 6.25: Creating t-SNE model.

[t-SNE] Computing 91 nearest neighbors... [t-SNE] Indexed 178 samples in 0.000s... [t-SNE] Computed neighbors for 178 samples in 0.003s... [t-SNE] Computed conditional probabilities for sample 178 / 178 [t-SNE] Mean sigma: 9.207049 [t-SNE] KL divergence after 250 iterations with early exaggeration: 51.930435 [t-SNE] KL divergence after 900 iterations: 0.135609

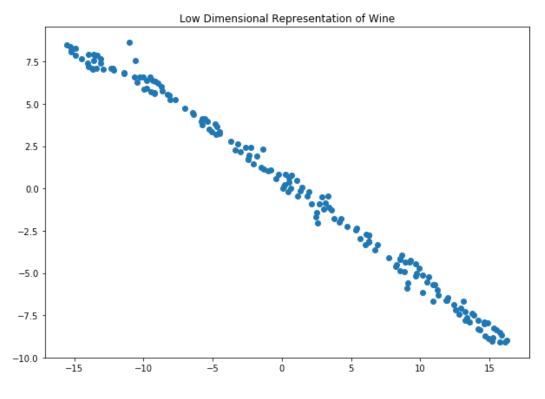


Figure 6.27: Scatterplot of two-dimensional data

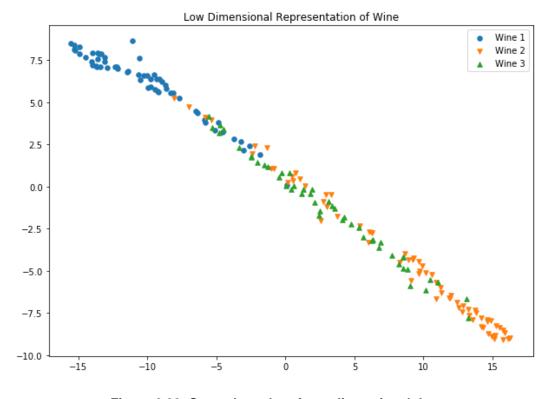


Figure 6.28: Secondary plot of two-dimensional data

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Figure 6.29: The first five rows of wine data.

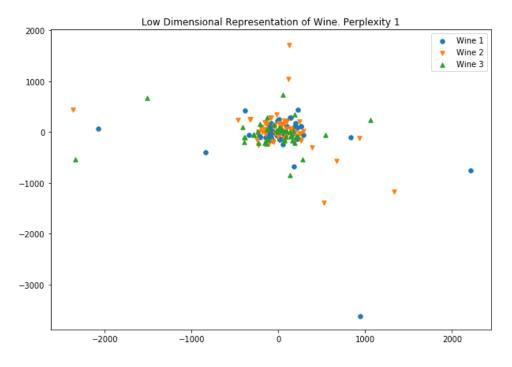


Figure 6.30: Plot for perplexity value 1

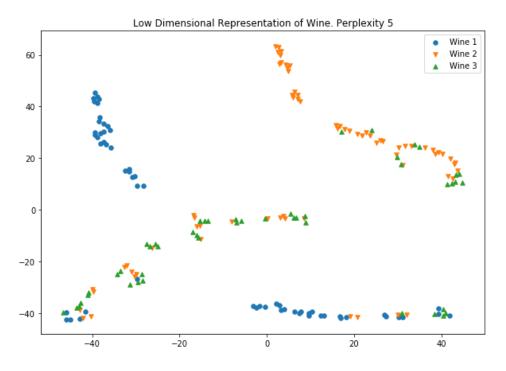


Figure 6.31: Plot for perplexity of 5

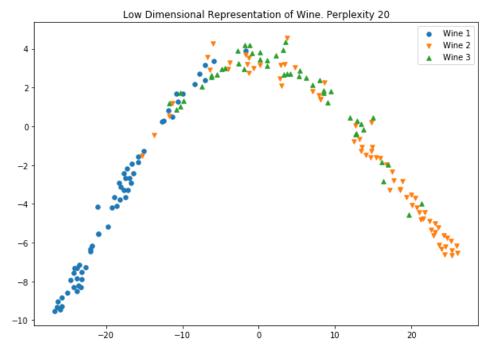
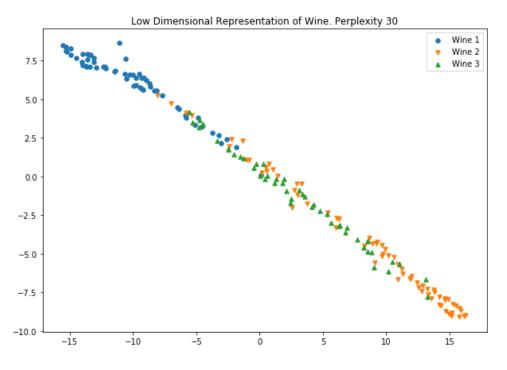
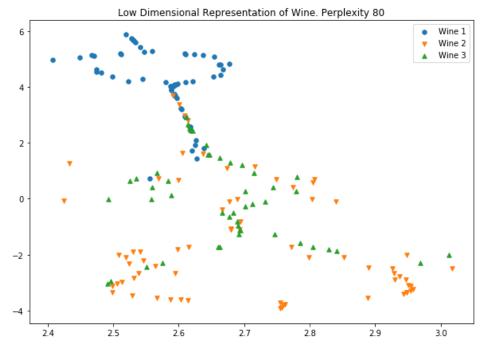


Figure 6.32: Plot for perplexity of 20





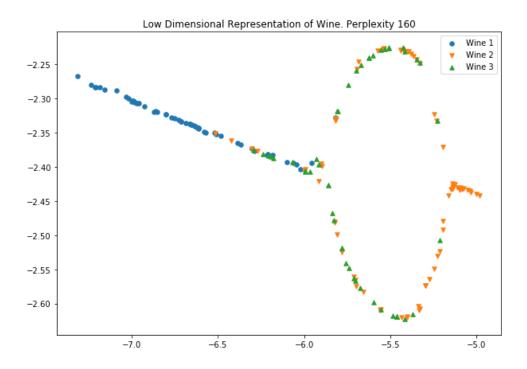


Figure 6.35: Plot for perplexity of 160

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Figure 6.36: The first five rows of wine dataset

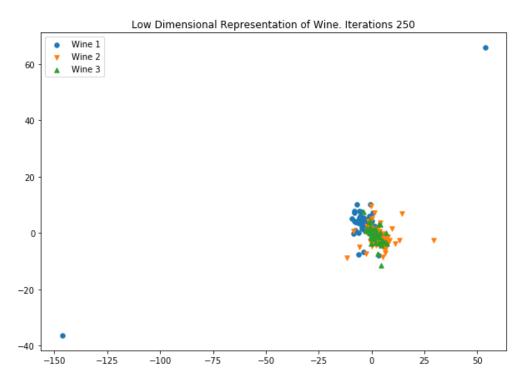


Figure 6.37: Scatterplot of wine classes with 250 iterations

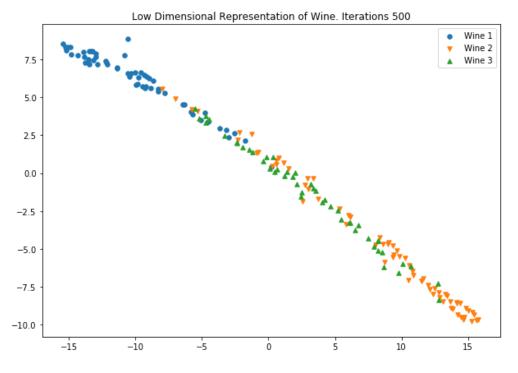


Figure 6.38: Scatterplot of wine classes with 500 iterations

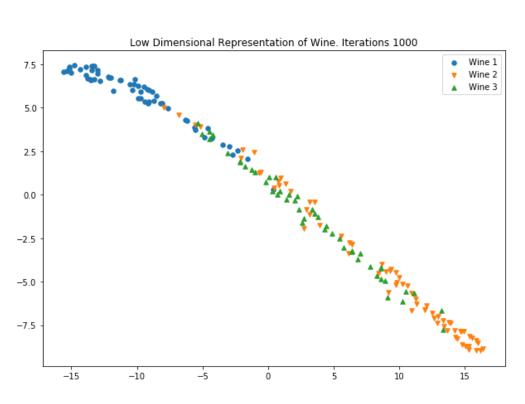


Figure 6.39: Scatterplot of wine classes with 1,000 iterations

Figure 7.54: Shape, column names, and head of data

HEADLINES: ['Five new running shoes that aim to go the extra mile http://lat.ms/1ELp3wU', 'Gym Rat: Disq class at Crunch is intense workou t on pulley system http://lat.ms/1EKOFdr', 'Noshing through thousands of ideas at Natural Products Expo West http://lat.ms/1EHq ywg', 'Natural Products Expo also explores beauty, supplements and more http://lat.ms/1EHqyfE', 'Free Fitness Weekends in South Bay beach cities aim to spark activity http://lat.ms/1EH3SMC']

LENGTH: 4171

Figure 7.55: Headlines and their length

```
HEADL THES:
[['running', 'shoes', 'extra'], ['class', 'crunch', 'intense', 'workout', 'pulley', 'system'], ['thousand', 'natural', 'produc
t'], ['natural', 'product', 'explore', 'beauty', 'supplement'], ['fitness', 'weekend', 'south', 'beach', 'spark', 'activity']]
LENGTH:
```

4093

Figure 7.56: Headline and length after removing None

['running shoes extra', 'class crunch intense workout pulley system', 'thousand natural product', 'natural product explore beau ty supplement', 'fitness weekend south beach spark activity', 'kayla harrison sacrifice', 'sonic treatment alzheimers disease', 'ultrasound brain restore memory alzheimers needle onlyso farin mouse', 'apple researchkit really medical research', 'warning c hantix drink taking might remember']

Figure 7.57: Tweets cleaned for modeling

	Number	0f	Topics	Perplexity Score
0			2	349.004885
1			4	404.137619
2			6	440.677441
3			8	464.222793
4			10	478.094739
5			12	493.116250
6			14	506.144776
7			16	524.674504
8			18	530.975575
9			20	535.461393

Figure 7.58: Number of topics versus perplexity score data frame

```
LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,
             evaluate_every=-1, learning_decay=0.7,
             learning_method='online', learning_offset=10.0,
             max_doc_update_iter=100, max_iter=10, mean_change_tol=0.001,
             n_components=2, n_jobs=None, n_topics=None, perp_tol=0.1,
             random_state=0, topic_word_prior=None,
             total_samples=1000000.0, verbose=0)
```

Figure 7.59: LDA model

	Topic0	Topic1
Word0	(0.0417, latfit)	(0.0817, study)
Word1	(0.0336, health)	(0.0306, cancer)
Word2	(0.0242, people)	(0.0212, patient)
Word3	(0.0203, could)	(0.0172, death)
Word4	(0.0192, brain)	(0.017, obesity)
Word5	(0.018, researcher)	(0.0168, doctor)
Word6	(0.0176, woman)	(0.0166, heart)
Word7	(0.016, report)	(0.0148, disease)
Word8	(0.0143, california)	(0.0144, weight)
Word9	(0.0125, scientist)	(0.0115, research)

		TOPICO
Doc0	(0.9443,	Want your legs to look good in those
Doc1	(0.9442,	11% of hospital patients got care the
Doc2	(0.9373,	Spend time with dad this Father's Day
Doc3	(0.9373,	Hve fun! That's an order. It's import
Doc4	(0.9372,	Need a new challenge for your ab work
Doc5		ZMapp goes 18-for-18 in treating monk
Doc6		Anti-vaccination activists target hig
Doc7		RT @latimesscience: @xprize pulled th
Doc8		About 75% of homeless people smoke, a
Doc9		Yogi crunches can give you flat abs a
	· · ·	о о ,
		Topic1
Doc0	(0.9498,	Topic1 Computer problems are delaying nursin
Doc0 Doc1		Computer problems are delaying nursin
	(0.9457,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go
Doc1	(0.9457, (0.9414,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase
Doc1 Doc2	(0.9457, (0.9414, (0.9372,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand
Doc1 Doc2 Doc3 Doc4	(0.9457, (0.9414, (0.9372, (0.9363,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand Doctors often delay vaccines for youn
Doc1 Doc2 Doc3 Doc4 Doc5	(0.9457, (0.9414, (0.9372, (0.9363, (0.9357,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand Doctors often delay vaccines for youn Humans eat more calories, protein and
Doc1 Doc2 Doc3 Doc4 Doc5 Doc6	(0.9457, (0.9414, (0.9372, (0.9363, (0.9357, (0.9356,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand Doctors often delay vaccines for youn Humans eat more calories, protein and Las Vegas: Finding the latest in bike
Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7	(0.9457, (0.9414, (0.9372, (0.9363, (0.9357, (0.9356, (0.9354,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand Doctors often delay vaccines for youn Humans eat more calories, protein and Las Vegas: Finding the latest in bike Soccer players' ACL injury risk may d
Doc1 Doc2 Doc3 Doc4 Doc5 Doc6	(0.9457, (0.9414, (0.9372, (0.9363, (0.9357, (0.9356, (0.9354, (0.9284,	Computer problems are delaying nursin Trans fats? DONE. Will the @US_FDA go Supplements to boost "low T" increase Study: The 2009 H1N1 "swine flu" pand Doctors often delay vaccines for youn Humans eat more calories, protein and Las Vegas: Finding the latest in bike

Figure 7.61: Document topic table

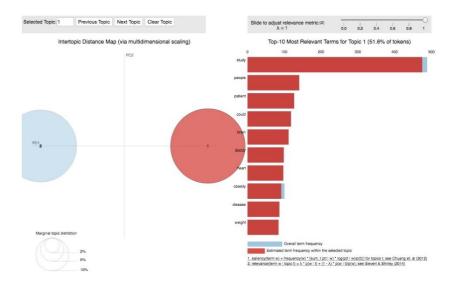


Figure 7.62: A histogram and biplot for the LDA model trained on health tweets

```
NMF(alpha=0.1, beta_loss='frobenius', init='nndsvda', l1_ratio=0.5,
max_iter=200, n_components=2, random_state=0, shuffle=False, solver='mu',
tol=0.0001, verbose=0)
```

Figure 7.63: Defining the NMF model

Topic0 \

	Topic0	Topic1
Word0	(0.3794, study)	(0.5955, latfit)
Word1	(0.0256, cancer)	(0.0487, steps)
Word2	(0.0207, people)	(0.0446, today)
Word3	(0.0183, obesity)	(0.0402, exercise)
Word4	(0.0183, brain)	(0.0273, healthtips)
Word5	(0.0182, health)	(0.0258, workout)
Word6	(0.0175, suggest)	(0.0203, getting)
Word7	(0.0167, weight)	(0.0192, fitness)
Word8	(0.0152, woman)	(0.0143, great)
Word9	(0.013, death)	(0.0131, morning)

Figure 7.64: The word-topic table with probabilities

	6 CHOCOLATE LOVE HEART T- LIGHTS	6 EGG HOUSE PAINTED WOOD	6 GIFT TAGS 50'S CHRISTMAS	6 GIFT TAGS VINTAGE CHRISTMAS	6 RIBBONS ELEGANT CHRISTMAS	6 RIBBONS EMPIRE	6 RIBBONS RUSTIC CHARM	6 RIBBONS SHIMMERING PINKS	6 ROCKET BALLOONS	60 CAKE CASES DOLLY GIRL DESIGN
20125	False	False	False	False	False	False	False	False	False	False
20126	False	False	False	False	False	False	False	False	False	False
20127	False	False	False	False	False	False	False	False	False	False
20128	False	False	False	False	False	False	False	False	False	False
20129	False	False	False	False	False	False	False	False	False	False
20130	False	False	False	False	False	False	False	False	False	False
20131	False	False	False	False	False	False	False	False	False	False
20132	False	False	False	False	False	False	False	False	False	False
20133	False	False	False	False	False	False	False	False	False	False
20134	False	False	False	False	False	False	False	False	False	False
20135	False	False	False	False	False	False	False	False	False	False

Figure 8.35: A subset of the cleaned, encoded, and recast DataFrame built from the complete online retail dataset

	support	itemsets
0	0.013359	(SET 2 TEA TOWELS I LOVE LONDON)
1	0.015793	(10 COLOUR SPACEBOY PEN)
2	0.012465	(12 MESSAGE CARDS WITH ENVELOPES)
3	0.017630	(12 PENCIL SMALL TUBE WOODLAND)
4	0.017978	(12 PENCILS SMALL TUBE RED RETROSPOT)
5	0.017630	(12 PENCILS SMALL TUBE SKULL)
6	0.013309	(12 PENCILS TALL TUBE RED RETROSPOT)

Figure 8.36: The Apriori algorithm results using the complete online retail dataset

	support	itemsets
1	0.015793	(10 COLOUR SPACEBOY PEN)

Figure 8.37: Result of item set containing	10 COLOUR SPACEBOY PEN
--	------------------------

	support	itemsets	length
836	0.020759	(ALARM CLOCK BAKELIKE PINK, ALARM CLOCK BAKELI	2
887	0.020362	(CHARLOTTE BAG SUKI DESIGN, CHARLOTTE BAG PINK	2
923	0.020610	(CHARLOTTE BAG SUKI DESIGN, STRAWBERRY CHARLOT	2
1105	0.020560	(JUMBO BAG PINK POLKADOT, JUMBO BAG BAROQUE B	2
1114	0.020908	(JUMBO SHOPPER VINTAGE RED PAISLEY, JUMBO BAG	2
1116	0.020957	(JUMBO STORAGE BAG SUKI, JUMBO BAG BAROQUE BL	2
1129	0.020560	(JUMBO BAG RED RETROSPOT, JUMBO BAG ALPHABET)	2
1137	0.020163	(JUMBO BAG PEARS, JUMBO BAG APPLES)	2
1203	0.020709	(JUMBO SHOPPER VINTAGE RED PAISLEY, JUMBO BAG	2
1218	0.020560	(JUMBO STORAGE BAG SKULLS, JUMBO BAG RED RETRO	2
1236	0.020610	(RECYCLING BAG RETROSPOT , JUMBO BAG RED RETRO	2
1328	0.020610	(LUNCH BAG BLACK SKULL., LUNCH BAG APPLE DESIGN)	2
1390	0.020610	(LUNCH BAG SUKI DESIGN , LUNCH BAG PINK POLKADOT)	2
1458	0.020610	(WHITE HANGING HEART T-LIGHT HOLDER, NATURAL S	2

Figure 8.38: The section of the results of filtering based on length and support

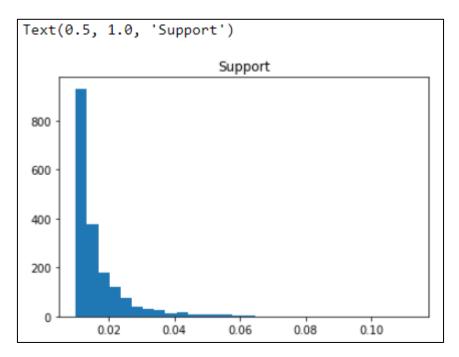


Figure 8.39: The distribution of support values

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(ALARM CLOCK BAKELIKE CHOCOLATE)	(ALARM CLOCK BAKELIKE GREEN)	0.021255	0.048669	0.013756	0.647196	13.297902	0.012722	2.696488
1	(ALARM CLOCK BAKELIKE CHOCOLATE)	(ALARM CLOCK BAKELIKE RED)	0.021255	0.052195	0.014501	0.682243	13.071023	0.013392	2.982798
2	(ALARM CLOCK BAKELIKE ORANGE)	(ALARM CLOCK BAKELIKE GREEN)	0.022100	0.048669	0.013558	0.613483	12.605201	0.012482	2.461292
3	(ALARM CLOCK BAKELIKE RED)	(ALARM CLOCK BAKELIKE GREEN)	0.052195	0.048669	0.031784	0.608944	12.511932	0.029244	2.432722
4	(ALARM CLOCK BAKELIKE GREEN)	(ALARM CLOCK BAKELIKE RED)	0.048669	0.052195	0.031784	0.653061	12.511932	0.029244	2.731908
5	(ALARM CLOCK BAKELIKE IVORY)	(ALARM CLOCK BAKELIKE RED)	0.028308	0.052195	0.018524	0.654386	12.537313	0.017047	2.742380
6	(ALARM CLOCK BAKELIKE ORANGE)	(ALARM CLOCK BAKELIKE RED)	0.022100	0.052195	0.014998	0.678652	13.002217	0.013845	2.949463

Figure 8.40: The association rules based on the complete online retail dataset

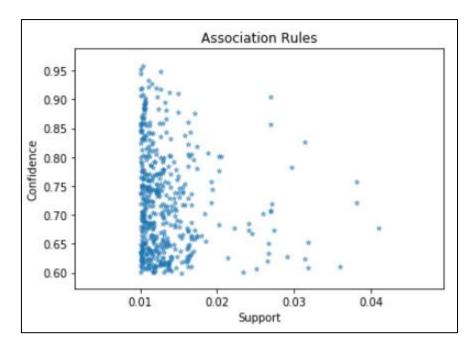


Figure 8.41: The plot of confidence against support

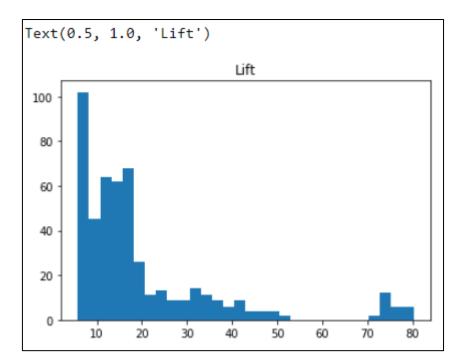


Figure 8.42: The distribution of lift values

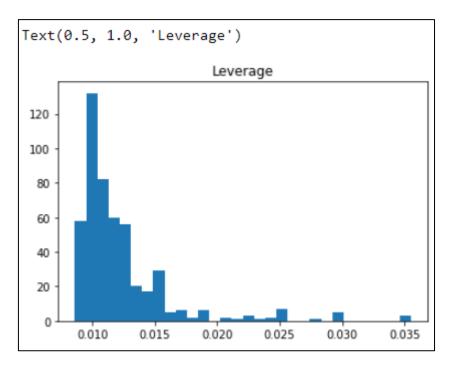


Figure 8.43: The distribution of leverage values

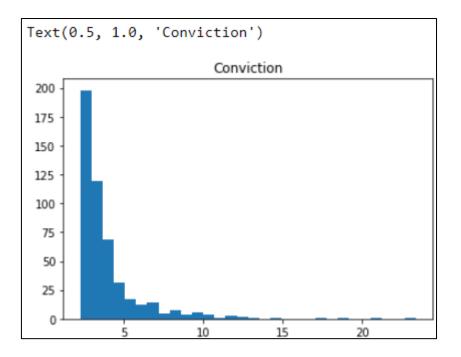


Figure 8.44: The distribution of conviction values

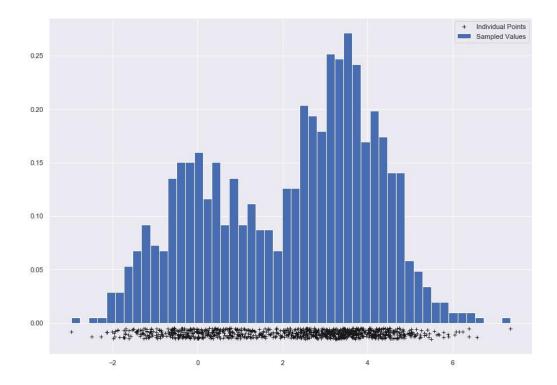


Figure 9.29: A histogram of the random sample with a scatterplot underneath

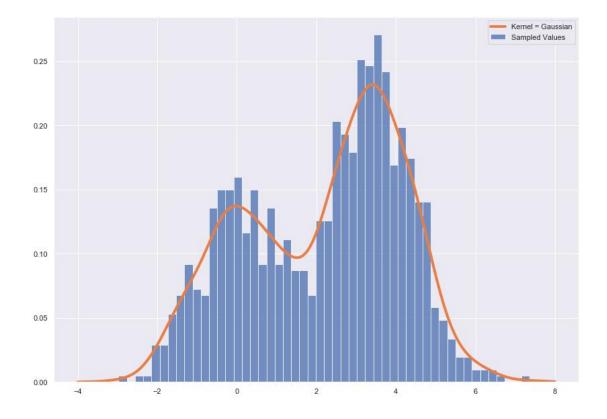


Figure 9.30: A histogram of the random sample with the optimal estimated density overlaid

```
Month: 2018-07
Dimensions: (95677, 12)
Head:
                                           Crime ID
                                                      Month \
0 e9fe8lec7a6f5d2a80445f04be3d7e92831dbf3090744e... 2018-07
1
   076b796bale1ba3f69c9144e2aa7a7bc85b61d51bf7a59... 2018-07
                  Reported by
                                             Falls within Longitude \
0 Metropolitan Police Service Metropolitan Police Service 0.774271
1
  Metropolitan Police Service Metropolitan Police Service -1.007293
   Latitude
                               Location LSOA code
                                                             LSOA name \
0 51.148147 On or near Bethersden Road E01024031
                                                         Ashford 012B
1
  51.893136
                      On or near Prison E01017674 Aylesbury Vale 010D
    Crime type
                   Last outcome category Context
0
  Other theft Status update unavailable
                                             NaN
1
  Other crime
                  Awaiting court outcome
                                             NaN
```

Figure 9.31: An example of one of the individual crime files

```
Dimensions - Full Data:
(546032, 12)
Unique Months - Full Data:
['2018-07' '2018-08' '2018-09' '2018-10' '2018-11' '2018-12']
Number of Unique Crime Types - Full Data:
14
Unique Crime Types - Full Data:
['Other theft' 'Other crime' 'Violence and sexual offences'
 'Anti-social behaviour' 'Criminal damage and arson' 'Drugs'
'Possession of weapons' 'Theft from the person' 'Vehicle crime'
 'Burglary' 'Public order' 'Robbery' 'Shoplifting' 'Bicycle theft']
Count Occurrences Of Each Unique Crime Type - Full Type:
                                117499
Violence and sexual offences
Anti-social behaviour
                                 115448
Other theft
                                   61833
Vehicle crime
                                  58857
Burglary
                                  41145
Criminal damage and arson
                                 28436
Public order
                                  24655
Theft from the person
                                  22670
Shoplifting
                                  21296
Drugs
                                  17292
Robbery
                                  17060
Bicycle theft
                                  11362
Other crime
                                    5223
Possession of weapons
                                    3256
Name: Crime type, dtype: int64
```

Figure 9.32: Descriptors of the full crime dataset

	Month	Longitude	Latitude	Crime type
0	2018-07	0.774271	51.148147	Other theft
1	2018-07	-1.007293	51.893136	Other crime
2	2018-07	0.744706	52.038219	Violence and sexual offences
3	2018-07	0.148434	51.595164	Anti-social behaviour
4	2018-07	0.137065	51.583672	Anti-social behaviour

Figure 9.33: Crime data in DataFrame form subset down to the Longitude, Latitude, Month, and Crime type columns

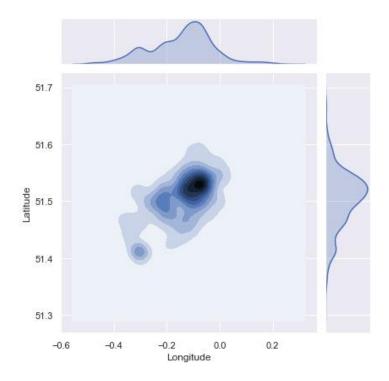


Figure 9.34: The estimated joint and marginal densities for bicycle thefts in July 2018

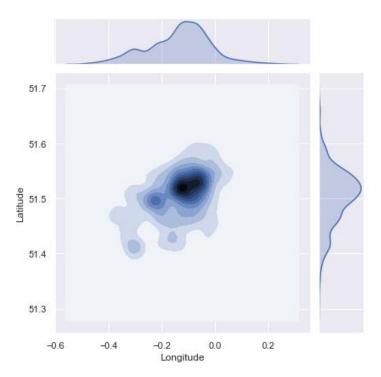


Figure 9.35: The estimated joint and marginal densities for bicycle thefts in September 2018

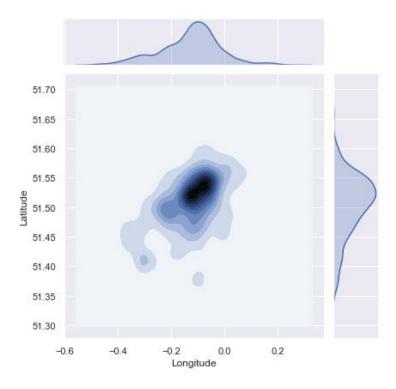


Figure 9.36: The estimated joint and marginal densities for bicycle thefts in December 2018

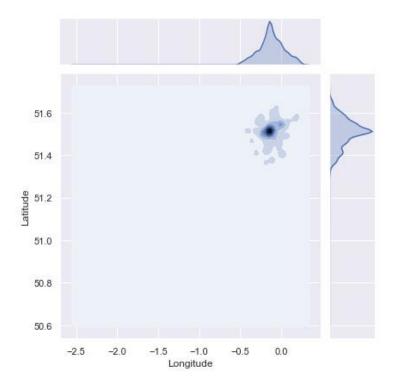


Figure 9.37: The estimated joint and marginal densities for shoplifting incidents in August 2018

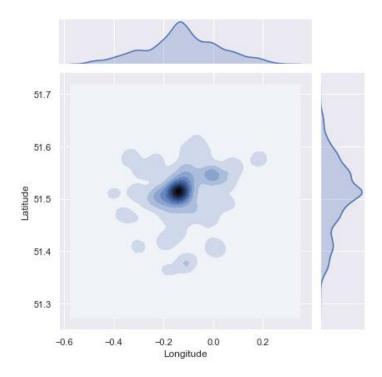


Figure 9.38: The estimated joint and marginal densities for shoplifting incidents in October 2018

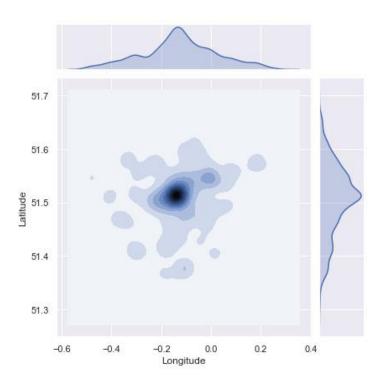


Figure 9.39: The estimated joint and marginal densities for shoplifting incidents in November 2018

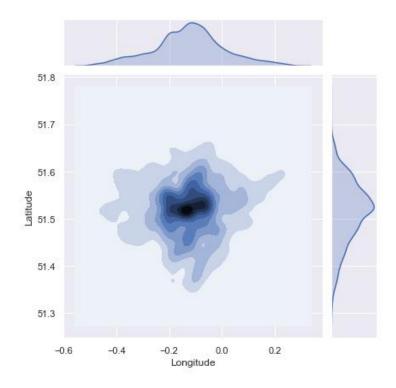


Figure 9.40: The estimated joint and marginal densities for burglaries in July 2018

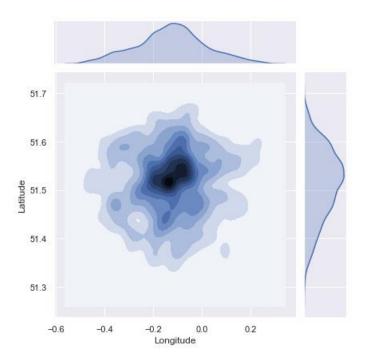


Figure 9.41: The estimated joint and marginal densities for burglaries in October 2018

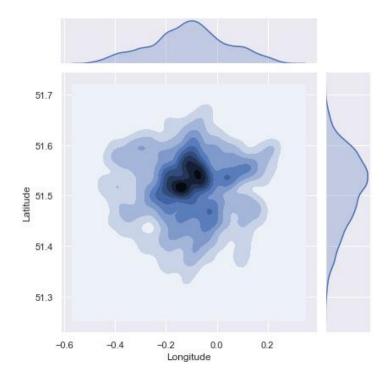


Figure 9.42: The estimated joint and marginal densities for burglaries in December 2018