Chapter 1: Getting Started with Deep
Learning Using PyTorch
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Source Text

munster have signed new zealand international francis saili on a two-year deal .
utility back saili , who made his all blacks debut against argentina in 2013 , will
move to the province later this year after the completion of his 2015 contractual
commitments . the 24-year-old currently plays for auckland-based super rugby side the
blues and was part of the new zealand under-20 side that won the junior world
championship in italy in 2011 . saili 's signature is something of a coup for munster
and head coach anthony foley believes he will be a great addition to their backline .
francis saili has signed a two-year deal to join munster and will link up with them
later this year . ' we are really pleased that francis has committed his future to
the province , ' foley told munster 's official website . ' he is a talented centre
with an impressive skill-set and he possesses the physical attributes to excel in the
northern hemisphere . ' i believe he will be a great addition to our backline and we
look forward to welcoming him to munster . ' saili has been capped twice by new
zealand and was part of the under 20 side that won the junior championship in 2011 .
saili , who joins all black team-mates dan carter , ma'a nonu , conrad smith and
charles piutau in agreeing to ply his trade in the northern hemisphere , is looking
forward to a fresh challenge . he said : ' i believe this is a fantastic opportunity
for me and i am fortunate to move to a club held in such high regard , with values
and traditions i can relate to from my time here in the blues . ' this experience
will stand to me as a player and i believe i can continue to improve and grow within
the munster set-up . ' as difficult as it is to leave the blues i look forward to the
exciting challenge ahead .

Reference summary

utility back francis saili will join up with munster later this year .
the new zealand international has signed a two-year contract .
saili made his debut for the all blacks against argentina in 2013 .
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Chapter 2: Building Blocks of Neural
Networks
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Chapter 3: Diving Deep into Neural Networks
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ResNet (
(convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True)

(relu): ReLU (inplace)
(maxpool): MaxPool2d (size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1))
(layerl): Sequential (
(0): BasicBlock (
(convl): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True)
)
(1): BasicBlock (
(convl): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True)
)
)
(layer2): Sequential (
(0): BasicBlock (
(convl): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1l, 1), bias=False)
(bnl): BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True)
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Chapter 4: Fundamentals of Machine

Learning
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Chapter 5: Deep Learning for Computer
Vision
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Dropout
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Softr

N

Convolution block 1 with 64
filters

Convolution block 2 with 128
filters

Convolution block 3 with 256
filters

Convolution block 4 with 512
filters

Convolution block 5 with 512
filters

Flatten

Fully connected layer. We will learn the parameters or weights
only for these layers keeping the weights of the rest of the layers
unchanged.
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Vgg16 Conv Blocks

vgg.leatures

Training Block

Vgg16 Linear
Layers

vgg.classifier

Vgg16 Conv Blocks

vgg.features

Training Block

Vigg16 Linear
Layers

vgg.classifier

During training we run both the
features block and classifier block
though the output of the vgg features
remain constant as the weights are
freezed

We caleulate the output of Conv
blacks once and use that for training
the Linear layers.
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Chapter 6: Deep Learning with Sequence
Data and Text
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The repeating module in an LSTM contains four interacting layers.
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Chapter 7: Generative Networks
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Batch_size Channels Values

0.1] 0.1] 0.4
1 0.2 0.2 0.2]|

0.3 0.3] 03|

0.2 0.2 0.2]|

1 2 0.2 0.2 0.2]|
02 0.2 0.2||

0.3 0.3 03|

3 0.3 0.3 03|

0.3 0.3 03|

0.1 0.1 o.1]|

1 0.2 0.2 0.2||

0.3 0.3 03|

0.2 0.2 0.2]|

2 2 0.2 0.2 0.2||
0.2 0.2 0.2]|

0.3 0.3 03|

3 0.3 0.3 03|

0.3 0.3 03|

Batch_size  Channels BMM(Gram Matrix, Transpose(Gram Matrix))
1 (0.1,0.1,0.1,0.2,0.2,0.2,0.3,0.3,0.3,)

1 2 (0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2)
3 (0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3)
1 (0.1,0.1,0.1,0.2,0.2,0.2,0.3,0.3,0.3,)
2 2 (0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2)
3 (0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3)
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alkyria Chronicles III =

e t lkyria of the B: , commonly referred to as Valkyria III outside Japan , is a tactical role @-@ playing

36 no Valkyr <unk> Chr Japanese L ,
ideo game developed by Sega and Media.Vision for the PlayStation Portable .
the story runs parallel to the first game and follows the " Nameless a penal military unit serving the nation of Gallia during the S

Released in January 2 it is the third game in the Valkyria series . <unk> the same fusion of tactical and real @-@
tine gameplay as its predecessors , cond Europan War who perform secret
black operations and are pitted agains perial unit " <unk> Raven " .
he game began de e a large portion of the work don lkyria Chronicles II . Whil the standard featu f des , it also u nt multiple adjustments ,
such as m Character designer <unk> Honjou and composer Hitoshi Sakimoto both returned from previous entries , along alkyria Chronicles II director Takes
with positive sales in Japan , and was praised by both Jap and western cr

into manga and an original video animation s . Due to low sales of Valkyria Chronicles

king the

A large team of writers handled the . The game 's opening theme was sung by May 'n .It met tics . After release ,

received downloadable content , along with an expanded edition in November of that year . It was also adap: 11

ameplay

take control of a military unit and take part in missions against enemy forces . Stories are

As with previous <unk> Chronicles games , Valkyria Chronicle: ical role @ ying game where player
's approach : when one option is selected , the other is sealed off to the play

through and replayed as they are unlocked . The route to each location on the map varies depending on an individual player
nlocked , some of them having a higher difficulty than those found in the h here are also love simulation elements related to the game 's two main <unk> , although they take a very minor ro
e game 's battle syst the <unk> syste
y their Act o nine characters g . During gameplay , characters will
alwa unk> to ter . To learn Battle Potentials , each cha a unique rs Table

over dire es . During missions , players select each unit using a top @@ down perspective of the battlefield map : once a char:
g all out if something happens to them , such as their health points ( HP ) getting L
ttle which are grown throughout the game and d skill ta
alkyria Form " and become <unk> , while Inca can target multiple enemy units with her heavy weapon
are divided into five classes : Scouts , <unk> , Engineers , <unk> and Armored Soldier . <unk> can switc changing their g eapon . Changing class does not greatly affec

LSTM

v
ENCODER
DECODER

Embedding weights are tied
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Chapter 8: Modern Network Architectures
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Filter
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Chapter 9: What Next?

Dog

95%

Mammal

92%

Dog Breed

91%

Labrador Retriever

Whiskers

Cat

Small To Medium Sized Cats

Puppy

88%

84%

83%

82%

79%

[36]




